ALFALUME INNOLUME

Quantum Dot Lasers: A Step Toward Easier Integration with PICs

AXALUME

Alexey Kovsh

EPIC Online Technology Meeting on Integrated Photonics Manufacturing with TOSIA

October 29, 2024

Outline

- Development of cost effective and reliable Photonics Integration Technology
	- The major key to bring Photonics to the highest volume ever existed
	- Billions of 200Gbps channels will be needed per year soon
- Technology landscape and competition
- Quantum Dot Lasers and Innolume GmbH
- QDs: Unique features and products enabling effective integration
	- Temperature stability
	- Extended reliability with no early-life failures
	- Optical Isolator unnecessary
	- Multi- chips: DFB arrays, Comb-lasers and WDM SOAs
	- \circ GaAs vs InP

Generative AI Changed Everything

ARISTA

 \rightarrow

Large Language Model sizes are increasing 10X per year Iso-Area Silicon performance is improving - 2X / 2 years

Market forecasts are being reconsidered every 6-8 months toward higher volumes

INNOLUME

Transition to 1600G (8x200G lambda)

Source: "Ethernet Optics - September 2024". Available at www.lightcounting.com

 $-0000 - 0 - 0 - 00$ October 2024 **LIGHTCOUNTING**

Our view:

Lightcounting Forecast October 2024, which is too low and way too conservative on speed of 1600G Transition

Source: Dell'Oro Group 2023 Al Networks Report

Dell'Oro Forecast 2023 – 1600G will ramp to Volume in 2025 and dominate by 2H2026

#5: Driving SiPh Products to Semi Cost Structure

Cost trending for scale-up in the foundry

Top drivers for silicon photonics cost-down:

- Cost per fiber and fiber bundling / automation
- Electrical / optical testing ٠
- Laser costs \bullet

Envisioned Optical Transceiver evolution

INNOLUME

Coupling methods landscape

INNOLUME

Edge coupling

Pros

- Highest efficiency
- Large bandwidth $(\sim 100 \text{ nm})$
- Optical port scalability
- Easy manufacturing process
- Polarization insensitive

Cons

- More complex and costly as of today . especially for the arrays!
	- No on-wafer testing possible •

Vertical coupling

Pros

- Passive alignment possible
- Coupling fixture can be pluggable
- Optical port scalability
- Easy manufacturing process
- On-wafer testing possible

Cons

- Narrow bandwidth $(\sim 30\text{-}40 \text{ nm})$.
	- Polarization sensitive •

Evanescent coupling

Pros

- Wafer scale manufacturing process
- No alignment required
- Heterogeneous integration of III-V-on-Si
- Native on-wafer testing

Cons

- Low power coupling only \bullet
- Complex taper region design •
- Extremely sensitive to the displacements .

Overview of current coupling solutions

Passive PIC-to-SMF

- \bullet V-grooves active final alignment
- Optoscribe DLW process, before placement
- Cudoform ٠ acquired by Senko, Dec'22
- Teramount Polymer-on-Si beam expander
- **Broadcom** Bulk beam expander

- Passive Laser-to-PIC-

- \bullet Laser diode Flip Chip p-side down on pedestal
- ♦ Micro-Transfer Printing both edge-to-edge and evanescent

to-PIC & to-SMF

- GlobalFoundries Heterointegration: Passive Flip Chip + V-grooves tech
- **Photonic Wire Bonding** Polymer: scalability & degradation issues

Multi-port remote Light source

Main challenges

- Avoid active alignment
- High yield, Robustness
- Couple arrays, provide multi-lambda channels

Also to consider

- High power device coupling
- 2D arrays arrangements
- Dense integration of active photonics on ICs due to the large footprint of the photonic devices

Polymer beam expander by Teramount

Losses < $0.5dB$ @ Misalignment ±30 µm

Photonic Wire Bonding by Vanguard Automation

Blaicher et al. Light: Science & Applications (2020)9:71 // https://doi.org/10.1038/s41377-020-0272-5

Passive Flip Chip integration // Passive alignment

Horizontal misalignment $± 1 \mu m$ Vertical misalignment ±0.5 µm Losses due to misalignment 1.2 dB

(a), (c) Laser cavity before integration, SEM and optical images

(b), (d) Laser cavity after integration, SEM and optical images

Pluggable fiber fabric attachment by Intel

Psaila, Nicholas, et al. "Detachable Optical Chiplet Connector for Co-Packaged Photonics." Journal of Lightwave Technology (2023)

Connector insertion

Technology landscape

<u>INNOLUME</u>

Modulation: PAM4

GaAs - VCSELs

100G today Share will decline with 200G due to reliability

InP - EML

Leading share today but losing share to SiPh Due to cost, reliability and module assembly yield

SiPh

"CW DFB + PIC + integration: laser \rightarrow PIC, $PIC \rightarrow FAU$ (fiber) = Optical Engine (or Light Engine)

800G DR8 and 2xFR4 ramping now with SiPh MZM 1600G (8x200G) ramping in 2025

CW DFB - InP today, GaAs QD is the better alternative but need to ramp

Passive integration is a very big challenge

TFLN:

Leading technology for 3200G (8x400G-PAM4)

Sales of lasers/modulators and PICs by technology

The same trend, 4-5x smaller market size (compared to transceivers)

Our view:

This Lightcounting forecast from July 24 is outdated (too low). Growth of bandwidth for AI fabrics is projected to be 10X over the next three years, primarily for 1600G *(8x200G) optics. SiPh will be the leading share gainer going forward.*

Forecast for 1.6T transceivers

Improved outlook for 200G VCSELs and SR8, but 2xFR4 and DR8 will dominate the market

October 2024

30 years of R&D, 20 years of production

INNOLUME

confidential

Progress: Why so slow? : QDs are slow!

Innolume & Axalume

Dortmund, DE:

- **III-V Laser Fab and testing facilities** two production MBE reactors, each 3x4" wafers per run
- San Diego, CA: SiPh design and measurement lab
- Cash-positive, ÷. 70 FTE (incl. 22 PhD and 3 DCs)
- $+$ > 100 customers world-wide (Y2023)

Team

- First in the world who brought QD lasers from research to the real markets
- Invented and developed the first QD Comb-lasers in 2007
- Developed proprietary GaAs DFB tech without overgrowth
- Pioneered SiPh µ-ring technology starting from 2004

Attracted Smart Money investment from Silicon Valley

Significant CapEx expansion program in Y2024, incl. new MBE machine:

Engaging with high-volume GaAs contract manufacturers for wafer processing

Revenue split:

- 50% Unique InAs/InGaAs/GaAs QD lasers @ 1.1 - 1.35 µm
- 50% InGaAs/GaAs QW lasers @ 0.8 1.1 µm successfully competing with world leaders

Contracts:

US Navy, DARPA, and NSF

MST.Factory Dortmund. DE 44263

≈i∪∪w∈

Quality control, Fundamental studies, Lifetime testing

DESIGN

Software based

chip design

EPITAXY

MBF

growth

WAFER FAB

Lithography

Thin-film Etching

Metal deposition

CHIP FAB

Chipping,

Optical coating

Bonding,

Fiber coupling

Markets & applications of O-band QD lasers and SOAs

DFB lasers and laser arrays

- 300mW @ 85°C, 250mW @ 105°C, PCE 20%, in CW regime Single DFB laser for DR4 and DR8 OT; External Light Source for CPO
- Linewidth: <100kHz Ο
- High yield DFB arrays: CW-WDM, CWDM single chip Due to no single overgrowth step
- No optical isolator needed Ο

Comb-laser

O 8 to 64 lines. 3 mW per lane, PCE > 20% Grid 25-100 GHz, solution AI driven connectivity

Comb-SOA

- O NF < 4db and Multi-lanes amplification, without modes interaction,
- O High PCE up to 10%

BDFA MSA package

O analog of EDFA in O-band O enabled by 1.19um QD laser 700mW, PCE 40%

Non-tapered single-mode BOA

 \bullet M² close to 1 O CW 1.5W @ 50°C, PCE 20% O CW 0.8W @ 100°C, PCE 15%

INNOLUME

'IES 60825-1 2014-05^tDeng, R., et. al., 2012. Yaogan Xuebao-Journal of Remote Sensing, 16(1), pp.192-206.

110

135

O-band High Power InAs/GaAs QD DFB laser

Optimized for high temperature operation

Matching the operation temperature of O-band photonics to the highest operating temperature of CMOS electronics

100mW CW DFB

INNOLUME

HVM is being ramped up

Demo at OFC2024 800G OSFP LPO DR8

[https://www.linkedin.com/posts/josepozophotonics_from-plan-to](https://www.linkedin.com/posts/josepozophotonics_from-plan-to-commercial-reality-thanks-to-activity-7179167917169664000-8z5F?utm_source=share&utm_medium=member_ios)[commercial-reality-thanks-to-activity-7179167917169664000-](https://www.linkedin.com/posts/josepozophotonics_from-plan-to-commercial-reality-thanks-to-activity-7179167917169664000-8z5F?utm_source=share&utm_medium=member_ios) [8z5F?utm_source=share&utm_medium=member_ios](https://www.linkedin.com/posts/josepozophotonics_from-plan-to-commercial-reality-thanks-to-activity-7179167917169664000-8z5F?utm_source=share&utm_medium=member_ios)

- 2 QD CW DFB lasers for 8 channels instead of 4 QW CW DFB
- SiP MZM
- No Optical Isolator
- Good eyes at TP2 point at both room temperature and 70C with < 2 dB TDECQ,
- 8W @ 70C

QD DFB laser sensitivity

INNOLUME

- QD about 10 time more resilient to reflection back compared to QW
- Different mechanisms limiting the stability vs reflection back for QDs and QWs

```
JTh5D.2
```
CLEO 2024 © Optica Publishing Group 2024

Isolator-free data transmission using a feedback tolerant heterogenous III-V/Si quantum dot laser

Xinru Wu^{1,*}, Duanni Huang¹, Guan-Lin Su¹, Songtao Liu¹, Shane Yerkes², Harel Frish², Haisheng Rong¹

Intel Corporation, 2200 Mission College Blvd, Santa Clara, CA 95054

Intel Corporation, 1600 Rio Rancho Blvd SE, Rio Rancho, NM87124 *xinru.wu@intel.com

Abstract: We demonstrate an isolator-free 128 Gb/s PAM4 data transmission using a silicon microring modulator and a heterogeneous III-V/Si quantum dot laser in the presence of optical feedback of up to -13dB. © 2024 The Author(s)

Fig. 1 (a) Schematic of the heterogeneous silicon OD-DFB laser with on-chip optical feedback control; (b) L-I curve of the OD-DFB; (c, d) Measured optical spectrum and RIN with (reflection $= -30$ dB) and without (reflection $= -13$ dB) VOA attenuation. The slight shift in lasing wavelength is due to the thermal crosstalk between the VOA and laser. (e) RIN of the OD-DFB at various bias currents, measured with VOA off.

300 mW DFB for ELS

High Power 1.3 µm GaAs arrays

Angle (deg)

DFB laser arrays - very first results

3x2 mm

16 DFBs, pitch 125um

Optical power (current, wavelength)

Wavelength

Current (A)

Current

Second wind of QD comb lasers

17 years ago:

Ouantum dot laser with 75 nm broad spectrum of emission // A.Kovsh et. al., Optics Letters, April 2007

FP modes of low-noise quantum dot laser // A.Gubenko et. al., Electronics Letters, December 2007

Fig. 3 Eye diagram generated by 10 Gbit/s digital modulation for one of ten filtered longitudinal modes for which $BER < 10^{-13}$ was measured

Today:

OFC March 6, 2023: Optical Communication for Data Centers and HPC // Bill Dally, SVP, NVIDIA

GPU/SWITCH DWDM ARCHITECTURE

ECOC 2023 Survey:

Frequency Comb for Optical Communications - Hype or Hope?

Difference with classical Mode-Locked lasers

- Stable operation (wide spectrum locked and low RIN) \bullet in a wide range of drive current and temperature
- Total power is stable with time $-$ no total intensity pulses \bullet
- Mode locking occurs even without saturable absorber \bullet

Invented by Innolume in 2007

Current level of performance

- Number of modes and spacing: 64 x 25 GHz 32 x 50 GHz 12 x 100 GHz 16 x 100 GHz under development
- Total CW Power up to 250 mW with PCE 25% ٠
- Efficient operation up to 100°C

Laser Reliability is the key

Vacuum Tube Computer, 70 years ago

Could not finish the calculation before some vacuum tube fails

NVIDIA supercomputer, today

Can not finish the model training before some laser fails

Laser Failure is a Root Cause for more than 85% of Optical Modules hardware failures in Cloud Networks

FUNDAMENTALLY BETTER RELIABILITY // 3D ISLANDS OF RELIABILITY

We have never observed COMD in QD lasers

Reduced effect of threading dislocation on threshold current and differential efficiency 100-1000x RAD Hardness

Quantum well (left) and dots (right) structures with threading dislocations (black lines)

We have never observed sudden failure in QD lasers

Preliminary Life-Time Studies

Our Data

FP Single Mode, CW Power: 900mW / 10MW/cm²

Customer Data: AIO Core, Japan FP Single Mode, CW Power: 50mW

On going ALT of DFB at 85℃ and 105℃

- Through the lifetime of Innolume there was no single sudden failure of QD laser was observed (thousands of burned-in lasers), whereas it happens for Innolume QW
- There was no single RMA for the modules produced by Innolume using QD lasers (thousands of module shipped), whereas it happened for the modules based on QWs
- The collected internal data are not yet enough to extrapolated FIT related to manufacturing process
- The expected lifetime 200mW $@85C$ exceeds 7 years

Semiconductor analogue of EDFA

INNOLUME

QD Semiconductor Optical Amplifier (SOA) operates in 2 regimes:

Performance

- P_{out} = 2 mW per channel
- Noise figure: 4 dB (not including fiber CE)
- Power budget improvement: 13 dB
- Error-free data transmission for NRZ

Performance

- P_{out} up to 1.5 W
- P_{est} up 26 dBm
- Temperature up to 105 °C \bullet
- PCE up to 28% \bullet
- Single mode, no astigmatism

Innolume's low-noise WDM SOA is optimized for signal amplification in state-of-the-art data transmission links. Thanks to its low noise figure and the highest saturation power on the market, the WDM SOA can be used across a wide range of input powers with minimal effect on bit error rate.

GaAs economics

Unique features of GaAs QD-based devices to serve SiPh

- Efficient operation up to 120°C ÷
- + Fundamentally better reliability in-situ "window structure" and much lower sensitivity to the dislocations
- + Much better manufacturability of GaAs vs InP on top of simpler DFB laser process
- Lower a-factor and feedback sensitivity no Optical Isolator needed
	- Single-chip WDM capability
- High yield DFB & SOA arrays, Comb lasers. External Cavity combs with gain chips & u-rings, Ultra-low noise Comb-SOA

Ease of Integration with SiPh and emerging modulation technologies (TFLN, BTO/Si, Organic)

DFB @120°C

DFB arrays x8, x16 QD Comb lasers

Ultra-low Noise Comb-SOA

Recent development

