

Institut für Mikroelektronik Stuttgart

Integrated Photonics Manufacturing at IMS CHIPS: Silicon, Silicon Nitride, and Thin-Film Lithium Niobate

Kevin Edelmann

13.01.2025

Who Are We?

Institut für Mikroelektronik Stuttgart

Foundation under civil law

- Clean room 1200 m², class ISO4
- Research, development & production for SMEs and large corporations
- Scientific collaboration with universities & research facilities

Integrated Circuits and Systems

Silicon Photonics

M(E)MS Technology

Nanopatterning

Institut für Mikroelektronik Stuttgart

Integrated Photonics Platforms

	Silicon-on-Insulator	Silicon Nitride	Lithium Niobate
Transparency window	1100 – 8000 nm (mostly used around 1310, 1550 nm)	450 – 8000 nm	320 – 5600 nm
Integration density	Very high	Medium	Medium
Waveguide loss	Medium	Low, high-power handling	Low
Switching options	Fast & lossy or slow & low-loss (thermal)	Thermal, very inefficient	Fast & low-loss (electro- optic)
Non-linearities	χ ⁽³⁾ (SFWM)	χ ⁽³⁾	$\chi^{(2)}$, can be poled
Quantum applications	Photonic QC, QKD	Quantum Sensing, Photonic QC, QKD	Photonic QC, QKC, Quantum Memory (via rare-earth doping), Quantum Repeaters,

Lithography Capabilities

High-resolution waveguide patterning: Variable-shaped electron-beam lithography, 50 keV, up to 1.6 x 1.6 μ m² (2 x 2 μ m²) shots

Back-End and addon patterning:

i-line stepper lithography and laser direct writing

→ Intense use of direct writing, tailored to flexible full-wafer layouts

Front-End Processes

- Waveguide patterning, minimum feature size 70 nm (SOI)
- Shallow etches (fully custom depths)
- Silicon: dopant implantation

Back-End and Addon Processes

- Metallization (up to three layers)
- TiN heaters
- Selective cladding removal
- Suspended waveguides
- Isolation trenches
- Etched coupling facets
- Deep etches
- Backside mirrors

250 nm

3 µm

600 nn

SiO

SiO₂

Si

20 um

0.50

Optical Flying Probe Tester

-12 -14 -14 -16

-16 -18

-20

-9

1.52

1.54

1.55

1.56

Wavelength / µm

1.54

Key objectives:

- High reproducibility: coupling loss uncertainty within ±0.25 dB
- High speed: 800 to 1000 optical spectra per hour (passive only)

1.60

1.56

1.58

Activities: Foundry Service

SOI and SiN platform:

- Custom technology stack: you only pay for processes that you need
- Mask-less direct writing: ideal for research, prototyping, and small-scale production, affordable at wafer-scale
- Delivery of full wafer or diced chips

Thin-film lithium niobate (start 2026):

- Will provide a PDK to academic users for standardized multi-project runs
- Tailored to quantum applications

Supplementary Portfolio:

- Design & simulation services
- SiGe detectors (SPADs, APD)
- ASIC development
- Diffractive optical elements (singleor multi-layer), computer generated holograms on chip- or wafer-scale
- Mastering services e.g. for nanoimprint lithography
- MEMS processes

Activities: Research Projects

With partners in industry and academia:

- OPALID: Beam-steering chips for LIDAR
- PhotonQ: photonic quantum computing platform based on SOI
- LichtBriQ: development of quantum optic building blocks on LNOI
- QSens: miniaturization of quantum magnetometers based on diamond and SiC
 - → Opportunity for German SME: Quanten4KMU platform

Thank you for your attention!

Contact:

Kevin Edelmann e-mail: edelmann@ims-chips.de phone: +49 711 21855 - 253 http://www.ims-chips.de