

MicroLED technologies for quantum systems

Jan Gülink QubeDot GmbH (co-founder & CTO)

Founded 2019

The difference:

We:

 Big Players do no touch their standard processes and often do not think outside their box

CONFIDENTIAL

• We understand the InGaN material system

45+ person years of development

Passionate TEAM of ~15 employees

• We are safe to provide any design from 1 ... 1000 µm!

Unique technology to process GaN material system

 Customers receive their <u>customized</u> microLED solution even in small quantities within short lead times

Monolithic approach: SMILE Platforms

- System with 16 x 16 pixels
- Standardized contact ring for different pixel sizes & pitches & wavelengths.
- 170 kHz frame rate

- System with 8 x 8 pixels
- Standardized contact ring for different pixel sizes & pitches & wavelengths.

5 μm pixel size 5 μm distance.

Single pixel modulated with 1kHz in this video.

Too fast for camera.

CONFIDENTIAL

From UV to green of course...

SMILE Platforms – Tuneable native red InGaN

 Red microLEDs with feature sizes down to 3 µm.

QubeDot

- Tuneable
- Can be adapted to customer designs with several emitters on a chip or distinct microLEDs on wafer
- → Pixel form is sizeindependent

				I	
		199			2
				H	
	-	H		H	-

100µm

Example: Information displays

Assembly of microLED displays

Copyright: Yole presentation @ Techblick 2021

Die size What about the efficiency in the low single-digit micron regime?

Transfer Which transfer mechanism is fast and reaches >> 99,9999% placement yield?

Example 4K Display: 3840 x 2160 (pixels) x 3 (RGB) = 24.88 million microLEDs.
If 99,99% successful transfers.
→ Still 2489 dead pixels...

Assembly of quantum computers

Ion-trap based quantum computers need to integrate & combine for example

- Different photonic elements (VCSEL / DFB laser, waveguides,...)
- Electronics (microwave circuits,...)
- Fiber coupling interfaces

On an interposer e.g. with TGVs and high thermal conductivity,...

No single material system can fulfill all requirements.

For scalability & system size reduction:

- Hybrid on-chip integration // Chiplet Design
- Fast & parallel element transfer & connection

Similar to microLED displays or chiplet design in modern CPUs...

QubeDot

QubeDot Transfer of photonic elements

Best semiconductor process is nothing without proper transfer tools and reliable interconnection technology.

We perform and offer

- LLO after bonding or
- LIFT for direct µLED transfer+bond

Laser Induced Forward Transfer (LIFT) is highly parallel and can transfer millions of units per hour.

Towards standardization of photonic dies

Potential size of

- Die 14 // 20 // 40 // 80 // + μm
- Contact pad 5 ... 40 µm any shape
- Emitter
 2 ... 75+ μm

Dies with size 80 x 80 μ m² with different contact pads. Ready for transfer.

QubeDot

No "golden way" yet in the industry.

Standards regarding die sizes, contacts, and emitters have huge benefits at the interfaces of all industry players.

MIRA3 TESCAN

Towards standardization of photonic dies II

Die size 14 x 14 μ m².

Towards standardization of photonic dies III

Die size $14 \times 14 \mu m^2$.

EPIC questions

What can you do for them?

- Design and processing of LEDs, Lasers, and waveguides
- Application-specific interposer and receivers
- Transfer
- Assembly and Interconnects

What can they do for you?

- Learn about the versatile possibilities of QubeDot and the GaN material system
- Talk to us about needs and potential capability matches I

Your personal contact

Jan Gülink, M.Sc. QubeDot GmbH Wilhelmsgarten 3 38100 Braunschweig

P +49 531 801 636 10M j.guelink@qubedot.com

