

Next Generation Photonic Integration and Packaging Solutions with Photonic Wire Bonding (PWB) and Facet-Attached Micro-Optical Elements

Dr. Zewang You

CIOE 2024-09-11, Shenzhen

Photonic Integrated Circuits are Growing Rapidly

Our Mission

Advance Photonic Packaging and Assembly by providing scalable 3D nano-fabrication solutions for prototyping and manufacturing

Enabling Next Generation Photonic Integration and Packaging Solutions with 3D Laser Lithography Solutions

Photonic Wire Bonding (PWB) and Facet-Attached Micro-Optical Lenses (FAML)

Photonic Wire Bonding: The Benefits

Low loss connection to arbitrary mode fields

Automated, **reproducible** and **fast** processes

Reliable connections under various conditions

High interconnect density (compact modules)

High degree of **design flexibility** for hybrid multi-chip integration

Laser by Freedom Photonics LLC

Compatibility with material platforms/foundries

Reliability - Insertion Loss in Damp Heat and Temperature Cycling

Use Cases – Photonic Wire Bonding

Active Device Integration

Multi-Chip Hybrid Integration | Passive alignment process | Mode-field-matching | Relaxed pick and place tolerances of \pm 30 μ m

"Packaged Tunable Single-Mode III-V Laser Integrated on a Silicon Photonic Integrated Chip Using Photonic Wire Bonding",(2024) Deenadayalan et al., IEEE 74th (ECTC), Denver, Colorado, USA)

"Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements ",(2021) Xu et al., Sci Rep 11, Article Number 16426 (2021)

"SiEPICfab: the Canadian silicon photonics rapid-prototyping foundry for integrated optics and quantum computing",(2021)

Darcie et al., Proc. SPIE 11691, Silicon Photonics XVI

Quantum Applications

Cryogenic temperatures | (IL) < 2dB | No degradation

"Cryogenic Optical Packaging Using Photonic Wire Bonds", (2023)

arXiv:2307.07496v1 [physics.optics]

"Plug-and-Play Fiber-Coupled Quantum Dot Single-Photon Source via Photonic Wire Bonding", Adv Quantum Technol. 2023, 2300227

Micro-Optical Elements for industrial applications

Compatible components

- Laser (DFB and other)
- PIN and APD diodes
- SMF, PMF and MMF fiber arrays
- PIC: SOI, SiN, InP, LiNb and more

Standard building blocks:

- Lenses with focal length up to centimeters and mode-field diameters of 2.0 μ m to 100 μ m (@1/e² intensity)
- Total-internal-reflection mirrors
- 3D-printed mode-size converter

Coupling, depending on laser and chip

- Laser-to-Chip: 0.6 to 2.5 dB
- Chip-to-Fiber: 1.5 to 2.5 dB

Alignment tolerances @ 1 dB penalty:

• $\pm 1.5 \mu m$ (single lens on one component) to $\pm 15 \mu m$ (beam expander)

Tested operational range

530 nm to 2000 nm

Reproducibility

- Below $\sigma = 0.2$ dB coupling variation
- Below 10% mode-field and focus length variation/deviation

Accuracy

- Below $\sigma = 50$ nm detection accuracy
- Below ±100 nm shape accuracy
- Less than 10 nm RMS-roughness

Reliability testing

- > 4000 h 85°C/85% rel. hum
- > 250 cycles -40°C to 85°C
- Reflow soldering, 3 cycles, 270°C
- Die bonding, 310°C

Shock testing

- Acceleration of up to 1500 g
- Vibration, 20g, all axis

High power operation

• >1 W @ 1550 nm

Cryogenic operation

• > 10 cycles 4K to room temperature

Use Cases – 3D-printed lenses

Relaxed Alignment Tolerances

Maximize Coupling Efficiency

Low Back reflectance

"3D-printed facet-attached microlenses for advanced photonic system assembly",(2023)

Xu et al., 2023. Light: Advanced Manufacturing, 4 (3). doi:10.37188/lam.2023.003

Alignment tolerance \pm 14.4 µm with a 1 dB penalty

Tyndall

Collaboration to incorporate 3D-lithography technology into POET's Optical Interposer™ platform.

"3D-printed aspherical lens with moth-eye anti-reflection structure",(2024)

Y. Mizuno et al., Proc. SPIE 12898, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVII, 128980R

Reflectance on the lens surface was reduced to **0.005%**

Coupling efficiency to fiber is improved to -0.33 dB

Structure size 360 x 470 nm

Quantum Applications

Cryogenic temperatures | No degradation | Broadband working range 530 – 2000 nm

"Superconducting nanowire single-photon detector with 3D-printed free-form microlenses", Opt. Express 29, 27708-27731 (2021)

The paper demonstrates FaMLs operating at cryogenic temperatures down to 4.6K

Assemblies undergo 10 cool down cycles

Path to Implement Photonic Integration with 3D Lithography

Step 1- 3D printed elements

Step 2- passive alignment

Step 3- PWBs with relaxed alignment tolerances

- improve coupling and yield
- No major changes to production process steps

- ensuring compact coupling
- high yields
- high package density

Vanguard **SYMPHONY 1000**

Machines

SONATA 1000

Automated 3D Lithography-based Nano Printing

REPRISE 1000

Automated Pre- and Post-Processing: Development and Encapsulation

Software

Software for Machine Control, Process Development and Management

Additional Products and Services

VanCore, VanClad, ...

Materials for the Production of PWBs and Micro Optical Lenses

Professional Services

- Training
- Process Development
- Feasibility Studies
- Development Support
- Maintenance Services

The Full Suite: SYMPHONY 1000

"Photonic integration and packaging with Photonic Wire Bonding and facet-attached micro-optical elements", PIC Magazine, September 2023

"As PIC Production Ramps Up, Fabricator Eye Alignment Options", Photonics Spectra, June 2022

"Photonic Wire Bonding: Using Lasers to Integrate Lasers", Photonics Spectra, August 2022

"Integrated photonics for quantum applications", Laser Focus World, September 2022

Ecosystem Partners, Academic and Industrial Users

Connect with Innovation

Centre de Collaboration MiQro Innovation

University of Stuttgart

