

980nm VCSEL&PD for automotive application

Kevin Lu | TPC

Agenda

01 TRUMPF Group

- **02** TRUMPF Photonic Components
- **03** 980nm VCSEL and PD for automotive data communication

TRUMPF

19:

TRUMPF GROUP

TRUMPF is...

Family business

Technology leader

Close to the customer

Innovation guarantor

TRUMPF

4 | Kevin Lu | TRUMPF Photonic Components

At a glance - Key corporate figures

Fiscal year 2022/23

Worldwide presence

Close to our customers worldwide with over 70 locations

TRUMPF

TRUMPF Photonic Components

Technology leader in VCSEL and photodiode solutions

TRUMPF Photonic Components is...

20 years legacy in VCSEL & Photodiode Supported by a strong IP portfolio

High volume supplier into multiple markets Over 2,5 billion devices shipped

International footprint Headquarters in Germany and locations worldwide

Strength in innovation Top talents in-house, investing with a 30% quota in R&D projects

Global presence

Focusing on key markets

Headquarter:	Ulm (Germany) incl. R&D & wafer fab I & II
© Connected Tec	Chnology Center: Aachen(Germany) Eindhoven (Netherlands) Princeton/Cranbury (USA)
Foundry III:	Taoyuan City (Taiwan)
Sales Offices:	Santa Clara (USA) Taicang, Shenzhen/ Guangzhou (China) Seoul (South Korea) Taoyuan City (Taiwan)

Market trends for VCSEL business

Our focus industries

Fields of Application

From datacom to sensing to industrial heating to automotive

Datacom

Data Centers

 Transceivers (TxRx), Active Optical Cables (AOC), embedded optical modules

High Performance Computing

Enterprise Networks

Consumer Datacom

• USB, Thunderbolt, HDMI

Sensing

Consumer Sensing

- Face recognition
 - Proximity sensing
- Laser autofocus
- AR / VR
- User input device

Industrial Sensing

 Environmental and gas sensing

Industrial Heating

E-Mobility

- Battery foil drying
- Pouch sealing

Composite manufacturing

- Local steel treatment
- Pixelated heating
- Joining of plastic parts

Additive Manufacturing

Automotive

Data transfer

In-vehicle optical network

Sensing

- In-cabin sensing, driver monitoring
- LiDAR

Heating

 Local softening of body steel

TRUMPF offers a broad product portfolio

World of VCSELs and photodiodes

Datacom

- 940 nm VCSELs and photodiodes for 100 G
- 850 nm VCSELs and photodiodes
- Up to 56 Gbps bandwidth
- 100Gbps in development
- Various array configurations (1x4, 1x12, ...)
- Non-standard wavelengths (940 nm – 1310 nm)
- Single-mode and multimode VCSELs

Sensing

Smallest Chips

- 150 µm chip size
- 2 20 mW optical power
- 850 nm and 940 nm emission wavelength

VCSEL arrays

- 0.5 4 W (cw)
- High pulse power 10 x cw
- 850 nm and 940 nm emission wavelength
- Short pulses down to 1ns
- Large 2D arrays with addressable zones

TO Can

 76x nm and 850 nm singlemode, TEC optional

Automotive

- High performing VCSELs and PDs for in-vehicle optical network for data transfer
- 980nm Wavelength
- Wide temperature range

TruHeat VCSEL

- Many chips to scale the power to multi kWs
- Addressable zones
- Slope efficiency ~1 W/A
- 980 nm emission wavelength

TRUMPF

980nm VCSEL and PD for automotive data communication

Optical-communication on car

The evolvement of automotive network. Opto-communication has to be adopted on car.

With the development of automotive technology, the information exchanged within a car is expanding significantly.

Where to use opto-harness and temperature requirement

Data rate requirement of each appliction

Various sensors are needed to support autonomous driving which result in high volume of data communication.
Opto-harness is applicable for ultrahigh speed communication such as 8K camera and backbone

TRUMPF's one chip solution to address all needs

Wavelength	Application	Data rate	Length	Temperature range
980nm	Camera signal transfer, LiDAR, infotainment	56G	Up to 40m (IEEE standard OM3 fiber) Up to 500m (optimized fiber for 980nm)	-40-125C (target spec)

J. Hellmig, X. Chen, R. Safaisini, A. Juarez, J. Dragt, J. E. Hurley, P. Moser, B. Sassiya, R. King, G. Larisch, M. Li, and R. Koerner, "56G VCSEL Transmission at 980 nm across 500 m Multimode Fiber," in *Optical Fiber Communication Conference (OFC) 2024*, Technical Digest Series (Optica Publishing Group, 2024), paper Th1B.3.

Why 980nm is recommended

With time being, there is almost no failure on 980nm, while about 50% failure happened on 850nm. Conclusion: 980nm has better performance and higher reliability on high temperature, is more suitable for the application in high temperature environment.

Kevin Lu TRUMPF Photonic Components