

Dr. Christian Buß, 2024-09-26

A member of the JENOPTIK Group

Centration measurement and application expertise

Special lenses

- Aspheres
- Cylinders
- IR lenses

Basics lens alignment

- Manual assembly processes
- SmartAlign: alignment w/o preadjustment

Automated lens alignment

- Doublet alignment wrt lens barrel
- Doublet alignment wrt optical axis
- Single lens on arbor

Bonding Lens to cell in 2D and 5D

State of the art for the measurement of aspheres

ocusing autocollimator Paraxial area only No information on the tilting of the asphere	 Profile recognition (tactile) Direct topography measurement Affordable Damage to the optical surface No referencing of the lower surface Time-consuming, complete surface scan 	 Scanning optical distance sensor + Complete topography measurement (with metrology frame) - Reference of the lower surface requires special sample holders and additional measurements of reference (3 balls or flange and cylinder surfaces of swap holder) 		
nterferometer + CGH Complete topography measurement Fast Expensive CGH is required for any asphere design No referencing of the lower	 Stitching Interferometer Full topography measurement Flexible Expensive No referencing of the lower surface 	 Focusing autocollimator with optical distance sensor + Direct measurement of the lower lens surface + Fast - No complete topography measurement (few form errors recognizable) 		

surface

Centration testing of aspheres

- 1. Measurement of paraxial centering based on the autocollimator
- 2. Alignment to the rotation axis
- 3. Measurement of asphere tilt by non-contact distance sensor
- 4. Optional: measurement of further reference surfaces

or in case of alignment turning

4. Machining of reference surfaces for further assembly

Measurement principle AspheroCheck[®] UP

- Amplitude A proportional to the tilting of the aspherical surface.
- Phase Φ indicates the azimuth angle of tilting.
- Automatic compensation of the influence of the displacement due to the paraxial centering error known from the autocollimator measurement.

Solutions

AspheroCheck[®] UP

The specialist for highest precision aspheric lens measurement

AspheroCheck[®] on OptiCentric[®] 101

Universal and customizable usage

AspheroCheck[®] on ATS

Make perfectly aligned aspheres for assembly

Double-sided aspheres

0

Method 1

Sequential measurement of both asphere axes

- Azimuth orientation of both measurements must be known
 "flip" holder
- Combination of two datasets using the (paraxial) optical axis as reference; no external reference needed
- Cycle time < 3 min

AspheroFlip

Special holder for double-sided aspheres:

- > AspheroFlip
- Measurement of the asphere axis is always performed from the top
- Lens is flipped
- Fitting pins ensure tight azimuth tolerance and define axis of rotation between measurements

Available for:

- OptiCentric[®] 101
- AspheroCheck[®] UP

Lens flipping

Sample:

- Biconvex double-aspheric lens
- Diameter: 25 mm (Øe 22.5 mm)
- Aspheric parameters same on both sides

Measurement:

- Using AspheroCheck[®] UP
- Automated (paraxial) optical axis alignment
- Automated sensor measurement R = 10 mm conversion factor = 2.1 arcmin / μm
- 5 repetitions per side

Sample:

- Biconvex double-aspheric lens
- Diameter: 25 mm (Øe 22.5 mm)
- Aspheric parameters same on both sides

Measurement:

- Using AspheroCheck[®] UP
- Automated (paraxial) optical axis alignment
- Automated sensor measurement R = 10 mm conversion factor = 2.1 arcmin / μm
- 5 repetitions per side

S1

۷s.

S2

Sample:

- Biconvex double-aspheric lens
- Diameter: 25 mm (Øe 22.5 mm)
- Aspheric parameters same on both sides

Measurement:

- Using AspheroCheck[®] UP
- Automated (paraxial) optical axis alignment
- Automated sensor measurement R = 10 mm <u>conver</u>sion factor = 2.1 arcmin / μm
- 5 full repetitions (including alignment)

			S2 asphere axis with respect to S1 asphere axis								
				Shift [µm]			Tilt [']				
		#	Z [mm]	Х	Y	Abs	Х	Υ	Abs		
		1	0.0	-4.8	65.1	65.3	1.17	-8.18	8.26		
		2	0.0	-3.4	64.8	64.9	1.26	-8.06	8.15		
		3	0.0	-3.6	65.6	65.7	1.23	-8.27	8.36		
		4	0.0	-4.8	65.3	65.5	1.23	-8.20	8.29		
		5	0.0	-3.6	65.0	65.1	1.03	-8.15	8.21		
		ave	rage	-4.0	65.2	65.3	1.18	-8.17	8.26		
		std.	dev.	0.6	0.3	0.3	0.08	0.07	0.07		
		Х-	z			¥-2				Х-Ү	
-10 -	-	62		S	2 vs S	1 shift		12			
						1 0			50		
0 -			51	@ 51	vertex	(2 - 0			-		
[uuu				Ē				E .	0	61	
N . 10 -	-			N 1	0		\rightarrow s2	vs. S1	tilt		
					1				50		
20 -			- optic	al axis	0		- opti	cal axis		G2	- optical axis
		1	C1 51 as	phere axis phere axis		K	1 = S1 a S2 a	sphere axis sphere axis	100	2	S1 asphere axis S2 asphere axis
	-100 -50	0 X Iu	50	100	-100	-50 0 V lun	50	100	-100	-50 0 X [um]	50 100

Method 2:

Direct measurement of top and bottom surfaces with distance sensor(s)

- Sequential measurement of surf #1 and #2 by automated sensor positioning of single sensor or
- Parallel measurement in dual sensor setup; cycle time <1min
- Needs custom lens holder design to grant physical access to bottom surface
- Limitations for some sample geometries (small lenses, biconcave lenses)

Conclusions and summary

- Same measurement principle is established on different platforms
- We cover applications from asphere testing to apshere assembly
- All devices support
 - Prealignment (simplifies interpretation of sensor signals)
 - Sensor fusion (each sensor does what it can do best
 - What you see is what you get (you can see a simple measurement, no need to rely on point cloud analysis)
- TRIOPTICS has provided solutions for small (2mm) to large (>200 mm), single- and double-sided, plastic and glass, IR and many VIS applications
- Double-sided asphere measurement without external references using the paraxial optical axis as reference (!)

A member of the JENOPTIK Group