

Neuromorphic sensor for security and surveillance

Dr. Niccolò Camarlinghi FlySight' s head of research: niccolo.camarlinghi@flysight.it

EPIC Online Technology Meeting on Neuromorphic Cameras 07/10/2024

FlySight profile

Who we are:

- SME located in Italy, Livorno, https://www.flysight.it/
- Software house operating in the defense and security domain

What we do:

- Cutting-edge software solutions for Decision Support Systems
- Remote sensing and data analytics
- Solutions based on Artificial Intelligence & Augmented Reality

What we offer:

- Flagship product OpenSight mission console → Cross platform solution for data fusion + GIS +
 AR + AI
- Custom solutions implementation

What we look for:

- Clients
- Scientific and Industrial partnership

Aim of this study

- Evaluate the potential of EVT cameras in security and defense domain
- Evaluate the possibility of using AI in this context for automatic target detection especially in challenging condition

- Setup a fair workbench to assess the relative advantages:
 - Built a specific VIS+EVT equipment for collecting synchronized data
 - Performed a data collection session under different condition
 - Used automatic target recognition as a metric to compare the two modalities

Data collection and experimental setup

• Experimental setup:

- Visible camera: ZED 2i stereo camera (Stereo labs)
- Event camera: Vision Cam EB (Imago Technologies)
- Setup was mounted on a fixed rig on a tripod

Software:

Custom python SW based on Metavision SDK and ZED SDK
 → allow to acquire synchronized images

Camera setup:

- Cameras have different FOV → FOV alignment carried out using a flashing light → detectable both in the EVT and VIS domains
- Bias setup performed manually based on visual assessment

Data Collection:

- Rural area → drone flight allowed
- Target: <u>person</u>, car , <u>drones</u>
- Selected videos where target are visible by both cameras at the same time

Camera	Link	FPs	Lens	lmage resolution	VFOV (deg)	HFOV (deg)
VIS	USB 3.0	30	Fixed 4 mm FL lens	1920x1080	31°	53°
EVT	ETH	NA	Removabl e 16mm FL lens	640x480	25°	33°

Automatic target detection VIS vs EVT

	Domain	ATR technology	Training set	Classes	Source
	VIS	YOLO-v6	COCO	81 classes	https://github.com/meituan/YOLOv6
	EVT	YOLO-v6-EVT	GEN1 dataset	Pedestrian and car	https://github.com/uzh- rpg/event_representation_study

VIS domain (Yolo v6)

- Max inference rate in VIS Domain → driven by Frame rate
- Data to perform inference → Frame

EVT domain (Yolo v6 EVT)

- Inference rate in EVT Domain → user tunable (60Hz)
- Number of events to perform inference → user tunable (5000 Hz)

Data & KPI

Data stratified into

- Pedestrian in low light condition
- Pedestrian wearing camouflage/cluttered background
- Pedestrian in unobstructed scenarios

Key Performance Indicators

- Time to detect a target [s] → seconds before the first detection of the target
- False positive rate [Hz] → average number of false alarm per second

For all KPIs less is better!

Results person detection

Time to detect [s]

False positive rate [Hz]

Qualitative results (drone flying over cluttered background)

EPIC Online Technology Meeting on Neuromorphic Cameras 07/10/2024

Niccolò Camarlinghi, FlySight

Qualitative results (Pedestrian wearing camouflage)

Conclusion and discussion

- Potential advantages of event based vision, particularly in terms of:
 - Time to detect
 - Data sparsity
- Artificial intelligence object detection results are promising especially in context where regular vision is challenged
- Open issues:
 - How to adjust camera bias automatically?
 - Improve ATR in EVT domain need more data → synthetic data simulation?