

WAVEFRONT SENSORS

Ultra-High Resolution Wavefront

sensing using Al

Rafael Porcar

DEFORMABLE MIRRORS

METROLOGY SYSTEMS

ADAPTIVE OPTICS SOLUTIONS

About Imagine Optic

- Founded in 1996
 Independant privatly owned company
- + Sales 7,2M €
- + **Employees** ~ 60
- + Patent applications 30+

> 2 000 sensors deployed !!

About Artificial Intelligence at Imagine Optic

Denoising images Ophthalmology, microscopy

EPIC Online Technology Meeting on AI in Optics | RPG

imagine 🚺 optic

09/10/2023

A,	3 0 0	O	U	J	• • •					1	200	C		a			r	J	.6	14-)(g	e				e	•	ġ) 			ixe		<u>B</u>	ľ	18)(+		Ċ		200	0		•			22	200		<u>.</u>	1		ı	24(00	- F
																															7 . Né			•																										
000 -																																																												
																																																į												ľ
																																	-																											-
00 -																													-			-					0.500	-	•																				-	_ 4
-																										_	-													١.,	1																			
-																										ſ																																	•	
																									-																	1																		ŀ
00 -																				i	•		j	-																			Ľ				-													
4																																																												
-																																																												- 6
-																						•																						•															•	1
- 00																						-																						-															*	-
2																																												*															•	
-				A	n	al	\mathbf{V}	zi	'n	σ	i	m	a	σ	e	5							L																																				į	
-1				\sim		۰۲ ۲:	י ע ה	- I		8		÷.,		8		-								L																			Ľ.																	- 4
-				Q	p	U	C	1L	ļ	ņ	e	Ľ	0	IC)g	SУ.								ų																																				
8																								•	1																P																		•	
-																										-	-																																	-
0 -																																							_	•																•				-
-						3 7											1	ļ		Ì	*	•		*							-				_	_	-	Mark	1	Ŷ													•		•				į	
÷.																																																												- 2
- 																																		•																									•	-
00 -																																																												-
2																															-).																													
-																																																												
																																																												L

9 modes per µL

¹ S. Meimon and al ONERA, "Sensing more modes with fewer sub-apertures: the LIFTed Shack-Hartmann wavefront sensor", May 15, 2014 / Vol. 39, No. 10 / OPTICS LETTERS

² C. Plantet, and al, "Experimental validation of LIFT for estimation of low-order modes in low-flux wavefront sensing", 15 July 2013 | Vol. 21, No. 14, OSA

³ R. Gonsalves, "Small-phase solution to the phase-retrieval problem", Opt. Lett., Vol. 26, No 10, pp. 684-685 (2001)

WE CAN RECONSTRUCT COMPLEX PHASES AT THE MICROLENGTH LEVEL !

Std HASO SWIR Resolution = 28×28

 $PV = 2.350 \ \mu m, RMS = 0.444 \ \mu m$

HASO SWIR LIFT

Resolution = 112 x 112 PV = 2.552 μm, RMS = 0.452 μm

LIFT = 680 x 500 phase points per pupil of analysis

What can AI do for LIFT wavefront sensing?

What can AI do for LIFT wavefront sensing?

Data generation

- + Generation of 'infinity' of centroids
- + Each corresponding to aleatory phase combinations
- + Simulation of camera behavior/noise
- + Some signal effects difficult to recreate

Training

- + 190 000 LIFT training pictures
- + 10 000 LIFT tests pictures
- + Iterations = 500
- + Learning rate = 0.001

Al-based LIFT vs matrix-based LIFT

Imagine **()**optic

What can AI do for LIFT wavefront sensing?

Sensor performances

Sensor usability

Sensor production

Matrix-based LIFT

✓ Robustness
 -training related-

✓ Speed (proc. freq.)
 as implemented

✓ Factory calibration time

AI-based LIFT

✓ Accuracy✓ Dynamic range

Thank you for your attention

Rafael Porcar rporcar@imagine-optic.com

Wavefrontrunners

imagine-optic.com

LIFT metrology for industry | Microoptics production

Φ Wavefront

LIFT metrology for industry | Microoptics production

Surface quality testing Injection mold validation

> **Confidential. Do not reproduce without express permission** EPIC Online Technology Meeting on Al in Optics |RPG

Imagine Coptic

LIFT metrology for industry | Automotive sensors

Surface shape in reflection Mold dev. & validation Optical quality in transmission MTF measurement

LIFT metrology for industry | Automotive sensors

Transmission Wavefront Error

LIFT metrology for industry | Glass manufacturing

Polishing quality Coating-induced stress imagine 🚺 optic

Support information | Achromatism

RMS = 0.057 μm

RMS = 0.057 µm

RMS = 0.053 µm

For more info, download our whitepaper "At wavelength metrology "

EPIC Online Technology Meeting on AI in Optics |RPG

Imagine Coptic