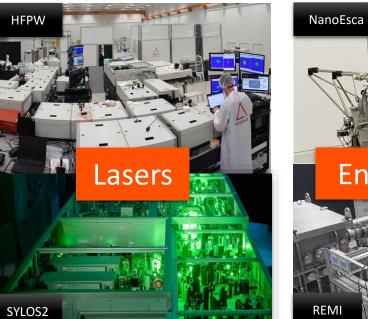
The Extreme Light Infrastructure EPIC Online Technology Meeting

High repetition rate PW laser pulses in ALPS

Roland Nagymihály, PhD

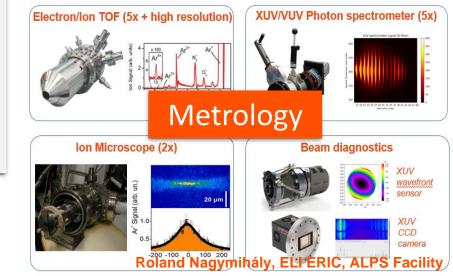

Area Manager, High Field Laser Laboratory, ALPS Facility

28 October 2024


ALPS facility: portfolio

End stations

EPIC Online Technology Meeting


Applications

- Material science and recollision physics in generation medium
- Ultrafast semiconductor optoelectronics
- o Ultrafast material change
- \circ Plasma optics
- Laser accelerator physics
- Attosecond resolved plasma physics
- Attosecond collective phenomena
- $\circ~$ Tomography and imaging
- Flash Radiobiology with e and high energy THz
- Strong field quantum optics
- Pump probe attosecond physics
- \circ Nano-photonics
- $\,\circ\,$ The micro macro connection

.....In gas-solid-liquid-plasma and designed matter

Simulation tools in intense laser matter interaction

Laser sources

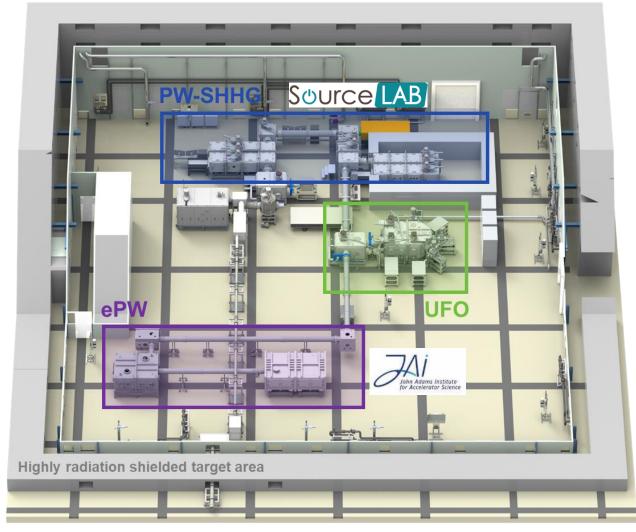
	(Target) Specifications	user ready
HR1	100 kHz, 30 fs, 1.8 mJ 100 kHz, <7 fs, 1 mJ	in commissioning
HR2	100 kHz, <6 fs, 5 mJ, CEP	
HR Alignment	10 kHz, 7 fs, 1 mJ	
MIR	100 kHz, <42 fs, 130 μJ, CEP 100 kHz, <20 fs, 70 μJ, CEP	Parameter spaces
MIR-HE	3.2um, 1 kHz, CEP, <50 fs, 20 mJ or <25fs, 10 mJ 1.6um, 1 kHz, CEP, <100 fs, 12 mJ	100 kHz, 1 kHz, 10 Hz, single shot
SYLOS 2	1 kHz, <7.5 fs, >30 mJ (flat top), >24 mJ (Gaussian), CEP	850 nm, 1030 nm, 3.2 μm
SYLOS 3	1 kHz, <8 fs, >120 mJ, CEP	150 μJ, 1 mJ, 120 mJ, 10 J
SYLOS Alignment	10 Hz, <12 fs, >40 mJ	200 pt) 2 mb) 220 mb) 200
SYLOS Alignment 2	50 Hz, 12 fs, 40 mJ	most few cycles
HF PW	<i>10 Hz, <17 fs, 34 J</i> 2.5 Hz, 25 fs, 10 J	many CEP-stable
THz Pump	1 kHz, 100 fs, 4 mJ 50 Hz, <0.5 ps, 0.5 J, synch	

EPIC Online Technology Meeting

HFPW laser

Operation level:

- Energy: 10 J
- Pulse duration: 23 fs
- Repetition rate: 2.5 Hz



Building A floor plan

Key design parameters:

- Energy: 34 J
- Pulse duration: 17 fs
- Repetition rate: 10 Hz

eli

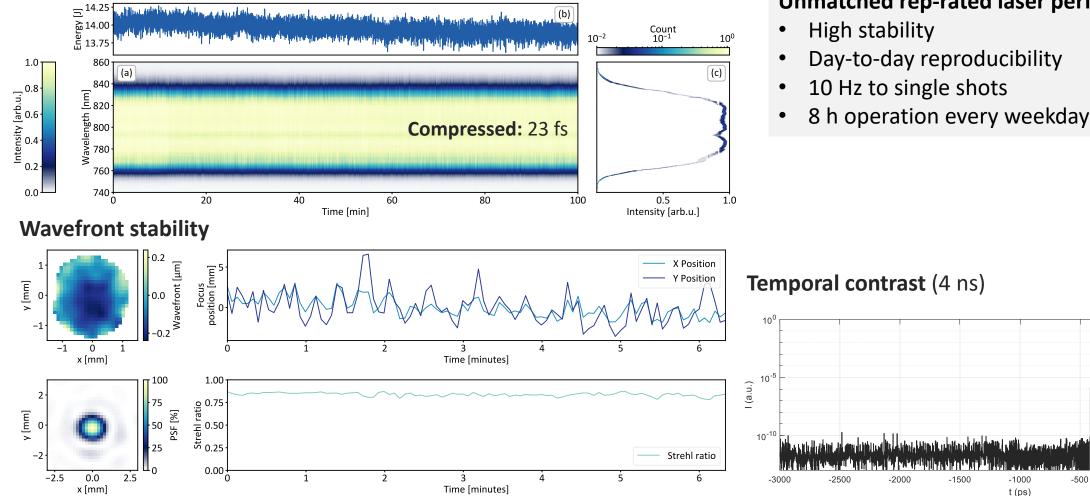
HFPW beamlines

Surface high harmonic beamline

- **Target:** mJ level attosecond XUV pulses
- Status: in commissioning, ion production already observed

Electron beamline

- Target: GeV electrons
- **Status:** in commissioning, diagnostics installed


UFO beamline

- Target: foil, gas, liquid targets with relativistic intensities, material studies, ultrafast probing
- **Status:** in commissioning, diagnostics installed

EPIC Online Technology Meeting

Energy and spectral stability

Laser performance

Unmatched rep-rated laser performance

8 h operation every weekday

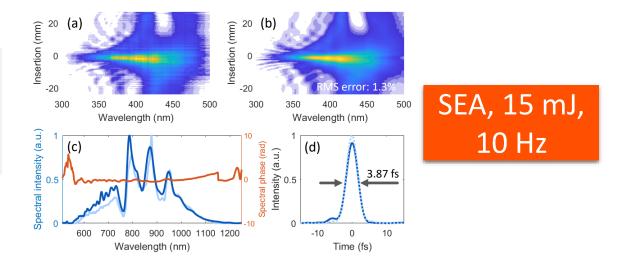
EPIC Online Technology Meeting

Roland Nagymihály, ELI ERIC, ALPS Facility

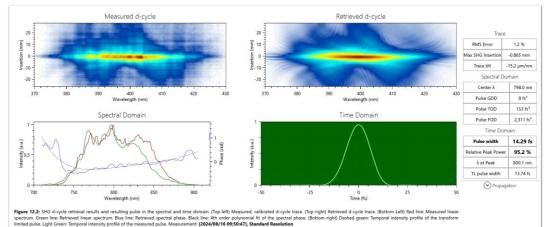
0

500

1000


ghosts

Internal R&D activities


Post-compression

- few mJ, 1-100 kHz (HR1, HR2)
- 10s of mJ, 1 kHz (SEA, SYLOS2)
- 100s of mJ, 10 Hz 1 kHz (SYLOS3, HF)

Ultrabroadband 100 Hz Ti:Sa laser development

- Frontend: OPCPA (Pharos + Orpheus, Light Conversion)
- Ti:Sa amplifiers
- 1.3 mJ, <15 fs pulses demonstrated

Add comments to retrieval

Diagnostics for temporal measurements

- Few-cycle sources → new diagnostics required
- New spectral ranges, single-cycle pulses
- Spatio-temporal diagnostics R&D

Collaborations in metrology

Diagnostics for temporal and ST measurements

- Extreme bandwidth sources → TIPTOE
- Spatio-temporal diagnostics → increased bandwidth

Diagnostics for spectral measurements

- Imaging spectrometers: large bandwidth
- New spectral range requirements pushed to SWIR

New few-to-single-cycle sources push the boundaries of existing metrology devices. New developments are driven by extreme sources!

What we need for operation

Pump lasers

- Flashlamps
- Capacitor banks
- D2O as coolant

Amplifiers

- High damage threshold dielectric mirrors up to 30 cm diameter with 730-870 nm bandwidth
- Ti:Sa repolishing, recoating

Compressor

- Diffraction gratings: gold coated
- RF plasma cleaning

What we need for developing further

Pump lasers

- Improved cooling of laser heads
- Diode lasers?
- Improved beam quality

Amplifiers

- Improved Ti:Sa quality for >4 cm diameter crystals
- Mirrors with increased bandwidth and LIDT

Compressor

- Diffraction gratings: multilayer dielectric?
- Grating cooling in vacuum for high repetition rates

Targets

- High rep-rate gas/liquid jets
- Rotating/shifting solids
- Cooling?

1777 Contraction of the second 11111 The state of the FILTS Thank you for your kind attention! Amplitude