

Prospects for extreme photon sources at the CERN accelerator complex

28th October 2024

E. Granados, M.M. Calderon, B. A. Marsh, V. N. Fedosseev, M. W. Krasny, A. Latina, V. Musat, R. Corsini, A. Martens, F. Zomer, X. Lu, K. Cassou, R. Chiche, K. Dupraz, D. Nutarelli, E. Cormier, G. Santarelli, and Y. Dutheil

... and many others

FORD

Outline

The CERN accelerator complex

- Brief history / introduction, key enabling technologies
- Interest in high-flux Gamma-ray sources: beam cooling, muon sources, dark matter research...

Gamma Factory

- Concept: exploiting the Doppler effect in ultra-relativistic partially stripped ion beams
- A 7 orders of magnitude Gamma-ray photon flux leap
- Roadmap Proof of principle experiment in SPS, final experiment in the LHC
- Status: Lasers, experimental area, expected performance

Inverse Compton Scattering X-ray sources

- Inherited technology from e+/e- colliders: high charge X-band accelerators in burst-mode operation
- High energy electro-optic frequency combs for Fabry-Perot cavities

Conclusions

The CERN accelerator complex

The CLIC development of high average current ultrafast electron sources enables the production of high-flux X-rays

The demonstration of *heavy ions in LHC* enables the production of **extreme high-flux \gamma-rays**

CÉRN

Comparison to other X-ray and Gamma-ray sources

"Can one make a technological leap of 7 orders of magnitude to deliver similar fluxes to FELs in the Gamma-rays?"

Example:

European XFEL	Gamma Factory
27,000 pulses/s	40 MHz
24 keV	400 MeV
10 ¹⁶ photons/s	10 ¹⁶ photons/s
1.4 mJ/pulse	16 mJ/pulse
38 W (J/s)	640 kW (kJ/s)

The Gamma Factory naturally requires **MW** power and **MJ** of stored beam energy

So far, the *only* facility currently providing such beam is the **LHC**

Basic idea: Use the Doppler effect with ultra-relativistic ions

Emission

Proof of principle experiment location

Proof of principle experimental setup

Laser systems and integration into SPS

Laser system

Fabry-Perot cavity assembly

Integration in SPS

Laser front-end performance

	Demo	GF PoP
FSR	160 MHz	40 MHz
Cavity linewidth	10 kHz	4 kHz
Finesse	24,000	10,000
Gain	6,700	5,000
Coupling efficiency	70%	70%
Amplified power	70 W	50 W
Estimated power	320 kW	180 kW
	Feb 2024	

Next steps:

Tender amplifier to 100W Installation at SPS in 2025-27

PoP experiments at SPS 2027-2032

'Fresh' from the press...

²Department of Engineering Physics, Tsinghua University, Beijing 100084, China

³Laboratoire des Matériaux Avancés–IP2I, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France ⁴Laboratoire Photonique Numérique et Nanosciences (LP2N), UMR 5298, CNRS-IOGS-Université Bordeaux, 33400 Talence, France ⁵Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), 351 cours de la Libération, F-33405 Talence, France

⁶CERN, CH-1211 Geneva, Switzerland

Electron sources available at CERN

CTF2 / CLIC
6 - 150 MeV
1 - 2 nC/bunch
1- 10,000 bunches
1 - 5 Hz trains
12 GHz (X-band)

Burst-mode enhancement cavities

Injected electron bunches

Burst-mode transient energy storage

Phys. Rev. Accel. Beams 21, 121601 (2018)

 $\label{eq:ctf2} \begin{array}{c} \underline{\text{CTF2:}} \ 2 \times 10^{10} \text{ph/s} @ 890 \ \text{eV} \\ \underline{\text{CLEAR:}} \ 3 \times 10^{10} \ \text{ph/s} @ 740 \ \text{keV} \end{array}$

"An Efficient Optimisation of a Burst Mode-Operated Fabry-Perot Cavity for Compton Light Sources", doi:10.18429/JACoW-FLS2023-TU1C1 (2023) 12

Electro-Optic GHz repetition rate frequency combs

Gigapico Burst Mode:

Wavelength (Yb): Average power: Maximum burst energy: Maximum pulse energy: Pulse repetition rate : Burst repetition rate: Pulse duration: Number of pulses per burst:

1030 nm
40 W
1 mJ
10 µJ
0.25 GHz to 18 GHz
50 kHz to several MHz
800 fs to 2 ps
10 to several 1000

Electro-Optic GHz repetition rate frequency combs

FUTURE CIRCULAR COLLIDER

Conclusions

The CERN accelerator complex provides a variety of unique beams for high photon energy production

Gamma Factory

- Phase I Proof of principle experiment starting 2027 to produce <u>44 keV photons at 10¹⁵ ph/s</u>
- Phase II in LHC up to <u>400 MeV photons at 10¹⁶ ph/s</u>

Inverse Compton Scattering X-ray sources

- High energy electro-optic frequency combs at multi-GHz repetition rate development underway
- Currently 2 electron beam user facilities operative with lasers and diagnostics for X-ray experiments
- Burst-mode high charge electron accelerators can yield <u>1 700 keV photons at 10¹⁰ ph/s</u>

Acknowledgements

Gamma Factory Collaboration:

100+ physicists from 40 institutes in 15 countries

A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴,
G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengu⁵, E.G. Bessonov⁶, N. Biancacci²,
J. Bierof⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Bukke^{9,10}, M. Bussmann³⁸, P. Constantin³⁴,
K. Cassou¹¹, F. Castelli¹¹, 1. Chaikovska¹¹, C. Curratolo¹³, C. Curcanal⁵⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Dupraz¹¹, Y. Dutheil², K. Dzierżega⁷, V. Fedosseev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster
Martinz², S.M. Gibson¹, B. Goddard², M. Gostistyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶,
T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁶, R. Kreseva², M. Kowalska²,
M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamoni², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh²,
A. Martens¹³, C. Michel¹⁰⁸, S. Miyamoto³¹ J. Molson², D. Nichita⁴⁴, D. Nutarell¹¹¹, L.J. Nevay¹, V. Pasalutsa³⁶,
Y. Papaphilippou², A. Peternko^{18,2}, V. Perinilo¹² J. Lin³³, G. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann²
R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Soreq³², T. Stochkler¹⁷, A. Sarzhykov²¹, I. Tolstikhina⁶,
F. Velotti², A. V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren⁷, M. Zanetti^{27,11}, F. Zimmermann⁷, M.S. Zolotorev²⁴ and F. Zomer¹¹

Electron facilities at CERN:

Partners and collaborators: Laser-particle interactions Lasers & Optics UNIVERSITY OF OXFORD INSTITUT universite **UPPSALA** d'OPTIQUE ROYAL PARIS-SACLAY GRADUATE SCHOOL UNIVERSITET HOLLOWAY ParisTech UNIVERSITY Laboratoire de Physique des 2 Infinis **OF LONDON** cnrs **NUCLÉAIRE** 1824 Laboratoire Photonique Numérique & Nanosciences **& PARTICULES** The University of Manchester MAX-PLANCK-GESELLSCHAFT 😥 IP PARIS IGIU Jefferson Lab **Electron sources** JOHANNES GUTENBERG UNIVERSITÄT MAINZ PAUL SCHERRER INSTITUT Science and Duke Technology **Facilities Council** UNIVERSITÉ PARIS 1 PANTHÉON SORBONNE GSI cea SPARC INFN nuclear physics **BERKELEY LAB** 調和ある多様性の創造 国立研究開発法人 量子科学技術研究開発機構 And many others...

home.cern

Expected performance

