# **How Quantum Magnetic Field** Sensors enable a new type of Human-Machine-Interface

Dr. Katharina Jag-Lauber Fellow Systems Engineer 08. October 2024 EPIC Technology Meeting at the Quantum Effects





Q.ANT AT A GLANCE

## Fast development and prototyping led us to 3 World Premiers made possible by a strong expert team, partner landscape and IP portfolio.





World Premiers <sup>1,2</sup>

Unrestricted | © Q.ANT GmbH 2024

Katharina Jag-Lauber | 08.10.2024



2.300

sqm Workspace in Stuttgart, Germany

6

#### **Publicly Funded Projects**

# Coffee Machines<sup>4</sup>

<sup>1</sup>www.produktion.de/technik/zukunftstechnologien/quantentechnologie/erste-industriefaehige-quantensensoren-sind-im-einsatz-44-344.html <sup>2</sup> qant.com/press-releases/q-ant-presents-the-potentials-of-quantum-technology-at-the-hannover-fair/ <sup>4</sup> Our fast pace took toll on 7 coffee machines thus far ;)

Q.ANT BUSINESS UNITS

## Q.ANT realizes the next level of data generation and data processing in the business units Native Computing and Native Sensing.

Native Computing

Native Sensing

Photonic Computation





Photonic chips and processors for ultra-efficient AI and HPC.

Magnetometry



human bio signals based on magnetic fields.



# Native Sensing Enabling a new kind of human-machine-interface

Q.ANT





## The most common bio signals are of electrical nature, i.e. a change of current due to a change of electrical potential.





| 1. Direct measurement               | Pro                   | Con                                                                                     |  |
|-------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|--|
| (I or U)                            | easy measure-<br>ment | <ul> <li>requires direct<br/>access through<br/>tissue</li> </ul>                       |  |
|                                     | Pro                   | Con                                                                                     |  |
| 2. Indirect measurement<br>(I or U) | easy<br>measurement   | <ul> <li>very sensitive to<br/>conditions, like<br/>sweating, body<br/>hairs</li> </ul> |  |
|                                     |                       |                                                                                         |  |

3. Contactless measurement (B)

| Pro |                   | Con |                 |
|-----|-------------------|-----|-----------------|
|     | contactless       |     | faint magnetic  |
|     | measurement       |     | Signals         |
|     | insensitive/ less |     | susceptible to  |
|     | sensitive to      |     | external inter- |
|     | sweating          |     | ference signals |
|     |                   |     |                 |

0

#### ELECTRICAL BIO SIGNALS

#### Interesting bio signals in humans







MOTIVATION

## Nitrogen vacancy magnetometers enable totally new real-life applications by allowing for high sensitivity while running under everyday ambient conditions.

#### Ultra-high sensitivity under everyday conditions





#### Our sensor allows to address new applications & markets

- The Q.ANT NV magnetometer works with synthetically grown diamond material, adding magnetically sensitive Nitrogen-Vacancy (NV) centers
- Competing magnetic sensing technology has either lower sensitivity or requires very special ambient operating conditions.
- Only NV magnetometers offer highest magnetic field sensitivity without any additional measures to provide a controlled environment, the key for later mass market applications
- The higher sensitivity region refers to magnetic fields below 100 pico-Tesla. Everyday conditions refer to a normal environment whereas special ambient condition summarizes measures like magnetic shielding or cryogenic temperatures



WORKING PRINCIPLE

## Working principle of NV diamond magnetometers Detection of red fluorescence under irradiation with green light and resonant microwaves



![](_page_7_Picture_6.jpeg)

**APPLICATIONS** 

#### **Application areas of Diamond Magnetometers**

The use-cases are widespread

![](_page_8_Picture_3.jpeg)

- Early detection of brain diseases
- MMG-based prosthesis control
- MEG-based measurement of neuronal brain activity for Human-Machine interaction

#### **Component and material** analysis

![](_page_8_Picture_8.jpeg)

- Current imaging in integrated circuits for quality control or fault analysis
- Detection of defects in the material structure of components
- Characterisation of magnetic materials and nanoparticles

![](_page_8_Picture_14.jpeg)

#### Localization

#### Geophysics

- Indoor and outdoor automated guided vehicles
- Localization applications in automotive
- GPS-independent navigation
- Exploration of magnetic fields in the Earth's interior to study plate tectonics
- Detection and mapping of mineral deposits
- Characterization of magnetic materials and minerals

**APPLICATIONS** 

## Imagine a world where we could sense bio-signals under everyday conditions How can these use case examples be made reality?

Use-case examples:

![](_page_9_Picture_3.jpeg)

#### **Prosthetics**

Locally resolved measurement of muscle signals for the control of prostheses and exoskeletons.

#### **Rehabilitation & intensive care**

Continuous measurement of muscular and neuronal function during rehab or in intensive care units.

![](_page_9_Picture_10.jpeg)

![](_page_9_Picture_11.jpeg)

#### **Empathic Car**

Realization of the empathic car by adjusting drive modes and interior based on muscle excitement signals.

![](_page_9_Picture_14.jpeg)

#### **Training feedback**

Give direct feedback on muscular excitement to adjust training sequences and monitor training effect.

#### STATUS

## With leading edge R&D and product development, Q.ANT is on a fast track Reaching the sensitivity for muscle signal analysis in 2024

![](_page_10_Picture_2.jpeg)

![](_page_10_Picture_3.jpeg)

|              | 2022: Proof-of-concept       | 2023: Fun                   |
|--------------|------------------------------|-----------------------------|
|              | Table-top lab experiment     | Fully function              |
| Size:        | 432000 ccm                   | 1000 ccm                    |
| Sensitivity: | 30000 pT/ $\sqrt{\text{Hz}}$ | 250 pT/√Hz                  |
| Purpose:     | In-house proof of concept    | Proof of sys<br>improving s |
| Business:    | _                            | First sales t               |

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

#### nctional prototype

ional magnetometer

Z

stem integration while

sensitivity

to academic customers

#### **2024:** Bio-signal sensitivity

Prosthesis control demo

160 ccm (sensor head)

20 pT/  $\sqrt{\text{Hz}}$ 

Proof of muscle signal detection

Several business opportunities with R&D

customers

**STATUS & OUTLOOK** 

## Q.ANT established and invested into valuable partnerships enabling early proof-of-concepts and to minimizing financial risks.

| Academic partn                            | Deve                                                                                    |            |
|-------------------------------------------|-----------------------------------------------------------------------------------------|------------|
| Fraunhofer                                | Proof of concept study prosthesis control with Q.ANT sensors.                           | deve       |
| EBERHARD KARLS<br>UNIVERSITÄT<br>TÜBINGEN | Proof of concept study muscle<br>diagnosis tool with Q.ANT<br>sensors. Funded by QSENS. | Hahi<br>Sc |
| Universität Stuttgart                     | Basic concept evaluation for<br>magnetometer operation.<br>Funded by QSENS.             |            |
| Pilot Customers                           |                                                                                         |            |

![](_page_11_Picture_3.jpeg)

Proof of concept study prosthesis control with Q.ANT sensors.

![](_page_11_Picture_7.jpeg)

#### lopment partners

ritec

Electronics development and manufacturing.

#### Funding

QSens

Bring quantum sensing into products.

![](_page_11_Picture_14.jpeg)

Bias field generation.

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Magnetometers for industrial applications.

**TOPTICA** eagleyard

Laser development.

**Your LOGO** 

Be a pilot customer and talk to us about purchasing options.

CONTACT

## Get in contact with us! Visit our booth here at Quantum Effects.

## Visit us in Hall C2, Booth 2B32

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

youtube.com/@qantgmbh1784

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

qant.com

![](_page_12_Picture_11.jpeg)

Katharina Jag-Lauber | 08.10.2024

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

# G.ANT