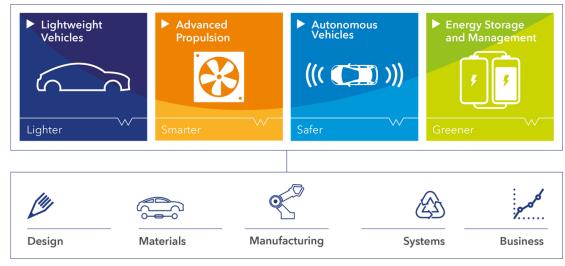
Advances in Laser Welding Using Beam Shaping Bolster Green Transport Future

Lasers4MaaS - Laser-as-a-Service

Dr Pasquale Franciosa

Head of Laser Beam Welding Group at WMG The University of Warwick p.franciosa@warwick.ac.uk

21st October 2024


EPIC Online Technology Meeting on Industrial Laser Processes for Automotive and Electro Mobility

WMG, The University of Warwick

- ▶ WMG is an academic department at The University of Warwick
- WMG is also founding member of the HVM Catapult
- Ethos:
 - Support the growth and success of the UK manufacturing industry
 - Bridge the gap between concept and commercialisation (TRL 3 to 7)
 - Accelerate and de-risk technological innovation

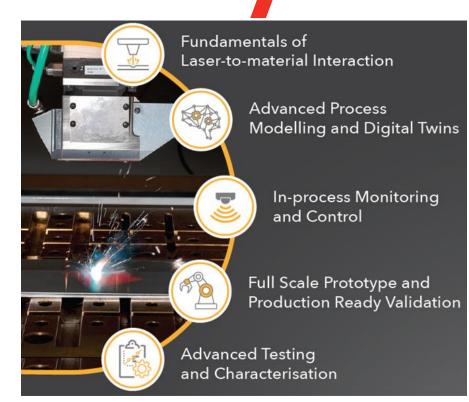
Current focus at WMG: Low Carbon Mobility

2

• WMG 204 Pasquale Franciosa (WMG), "Advances in Laser Welding Using Beam Shaping Bolster Green Transport Future", EPIC Technology Meeting 2024

Laser Beam Welding Lab at WMG

Our expertise:

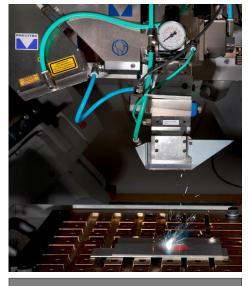

- Later-to-material interaction
- Multi-physical modelling, quality control
- Process scale-up from concept to full scale prototype
- Advanced testing and weld characterisation

Our capability:

- State-of-the art facility with lasers and advanced optics
- Tooling design/process simulation, including robotics cell
- Quality control enabled by state-of-the-art sensors

Success stories:

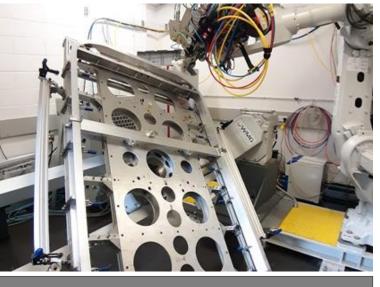
- INNOVISTA award for remote laser welding process
- Laser welded battery enclosures using recycled aluminium
- Impact of beam shaping to material response



Laser Beam Welding Lab at WMG

Our work cuts across the entire research and innovation cycle including **fundamental research** (TRL 3/4), **applied research** (TRL 5/6) and **technology development** (TRL 7)

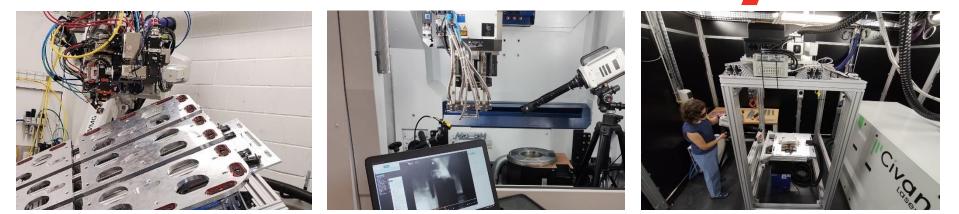
Fundamental research



TRL3/4

Applied research

Full scale prototype


TRL7

4

© WMG 204 Pasquale Franciosa (WMG), "Advances in Laser Welding Using Beam Shaping Bolster Green Transport Future", EPIC Technology Meeting 2024

Laser Beam Welding Lab at WMG

Robotics Laser Beam Welding

4-axis CNC Laser Beam Welding

Laser Welding with Dynamic Beam Shaping

5

THE UNIVERSITY OF WARWICK

Laser systems: LASERLINE LDF 6000; COHERENT ARM FL10000; TRUMPF Brightline 6000; Manual handheld laser (1.5kW with wire feeder); CIVAN 14 kW with dynamic beam shaping

Welding heads: Precitec Weldmaster (1D wobbling head with motorised collimator); K-lab 200 (2D scanner/manual collimator). Scansonic ALO4-O/ALO4 (2D wobbling with seam tracking and spot-in-spot module); Scansonic RLW-S (2D scanner/auto collimator); TRUMPF PFO (2D scanner/auto collimator); SmartMOVE (2D scanner)

In-process sensors: high speed camera; IR camera; photodiodes; OCT; XARION ultrafast optical microphone

Diagnostic kits: PRIMES power and focus meter

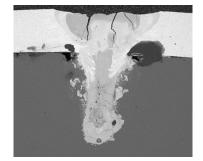
Simulation suites: Flow3D; Comsol Multiphysics

© WMG 204 Pasquale Franciosa (WMG), "Advances in Laser Welding Using Beam Shaping Bolster Green Transport Future", EPIC Technology Meeting 2024

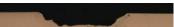
Production at scale for automotive e-mobility

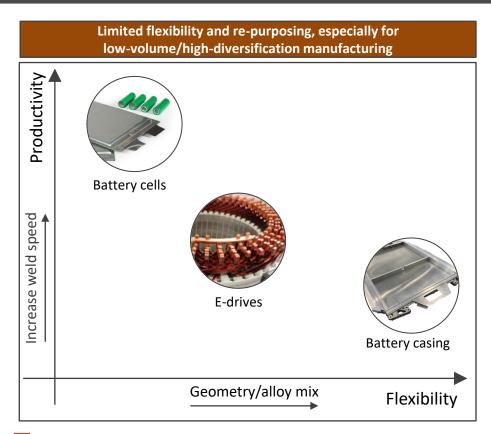
What is the industry asking for?

- Novel welding/de-welding strategies
- Solutions for new material combinations
- CAPEX reduction
- Need for zero-defects
- Up-skilling and new skillsets

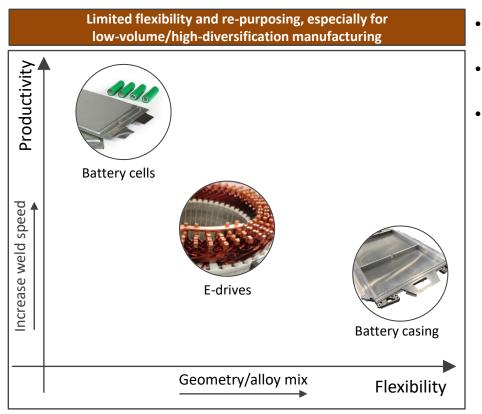

Centreline cracks

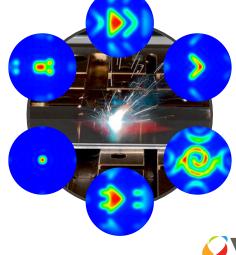
Lack of connection


THE UNIVERSITY OF WARWICK


Micro-cacks and intermetallics

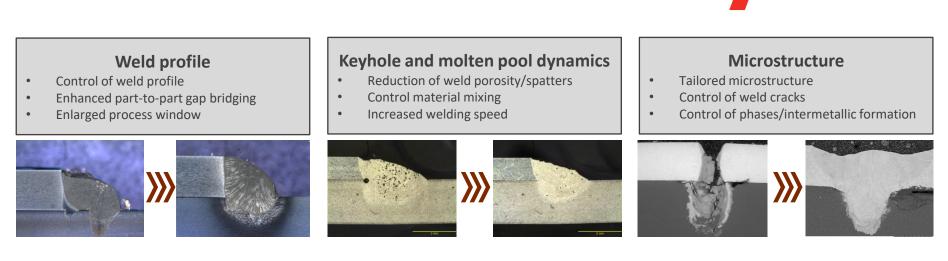
Production at scale for automotive e-mobility


What is the industry asking for?



Production at scale for automotive e-mobility

What is the industry asking for?


- No doubt that laser is a universal tool, however, so far different lasers for different applications
- A productivity-driven approach tends to jeopardise the full flexibility of advanced laser welding
- Can we capitalise on latest advances in laser beam shaping (time and space modulation of beam intensity)?

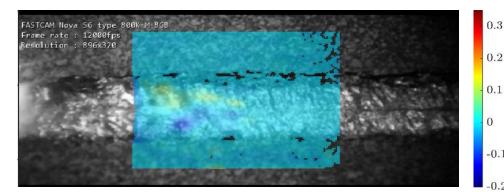
THE UNIVERSITY OF WARWICK

Advances in Laser Welding

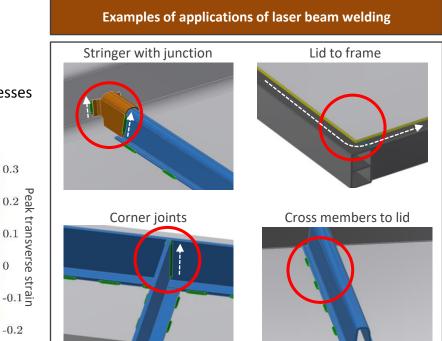
Laser Beam shaping

9

THE UNIVERSITY OF WARWICK


- For years, laser welding systems have provided fixed output beam profiles
- Laser beam shaping makes use of a static beam (no movable parts) or wobbling beams to tailors the heat input in time and space, during solidification

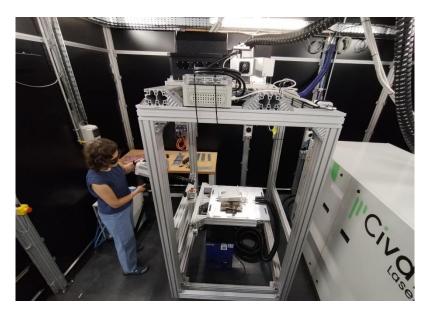
... hence, great opportunity to unlock the full flexibility of advanced laser welding systems


Autogenous laser welding of 6xxx series aluminium

Statements:

- Higher range vehicles generally have aluminium battery trays
- Aluminium 6xxx series is hot crack sensitive
- State-of-the-art use filler wire in conjunction with laser: complex
- Industry demands new advances for autogenous laser-only processes

*example of centreline crack during autogenous laser welding



-0 2

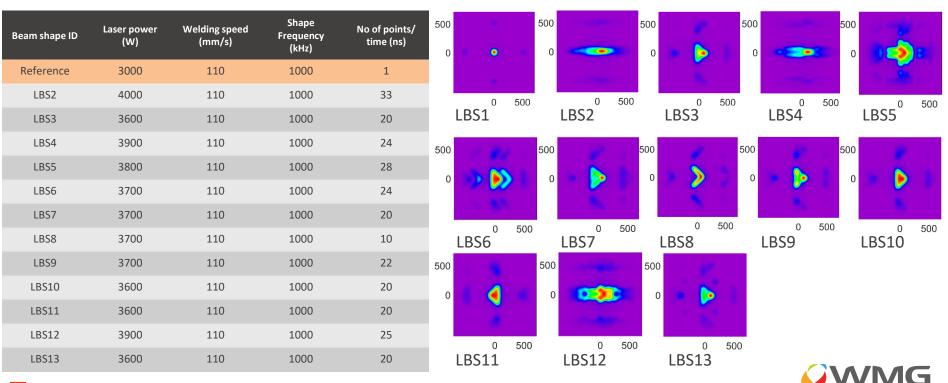
Autogenous laser welding of 6xxx series aluminium

Testing CBC-OPA CIVAN dynamic beam shaping

- AA6061 overlap weld: 0.4 mm to 0.8 mm
- Full penetration weld

CIVAN OPA6

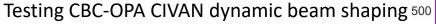
- Total power: 14 kW
- Pre-focussed beam: 1.5 m focal length
- Smallest spot diameter: ~120 μm
- Total area covered by laser on focus : ~1.5 mm

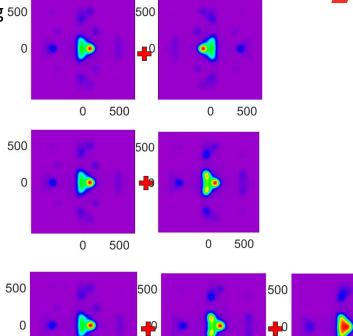

2D Scanner – SmartMOVE SH30G-ME-LD

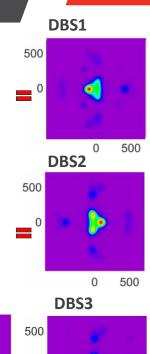
- Working envelop: 800 mm diameter
- Stroke limits: +/-18°
- Total laser power: 11 kW
- Autofocus option enabled by the dynamic beam shaping
- Auto-path alignment enabled by the dynamic beam shaping
- Co-axial camera available
- Option to integrate third-party sensors (LWM, etc.)
- Closed-loop control between scanner and CIVAN source

Autogenous laser welding of 6xxx series aluminium

Testing CBC-OPA CIVAN dynamic beam shaping

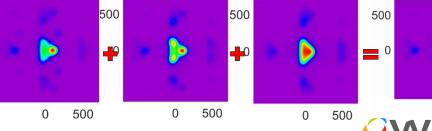



• WMG 204 Pasquale Franciosa (WMG), "Advances in Laser Welding Using Beam Shaping Bolster Green Transport Future", EPIC Technology Meeting 2024


THE UNIVERSITY OF WARWICK

Autogenous laser welding of 6xxx series aluminium

Beam shape ID	Laser power (W)	Welding speed (mm/s)	Shape frequency (kHz)	Sequence frequency (Hz)
DBS1-1	3700	110	1000	1000
DBS1-2	3700	110	1000	200
DBS1-3	3700	110	1000	100
DBS2-1	3700	110	1000	1000
DBS2-2	3700	110	1000	200
DBS2-3	3700	110	1000	100
DBS3-1	3700	110	1000	1000
DBS3-2	3700	110	1000	200
DBS3-3	3700	110	1000	100



10

0

THE UNIVERSITY OF WARWICK

500

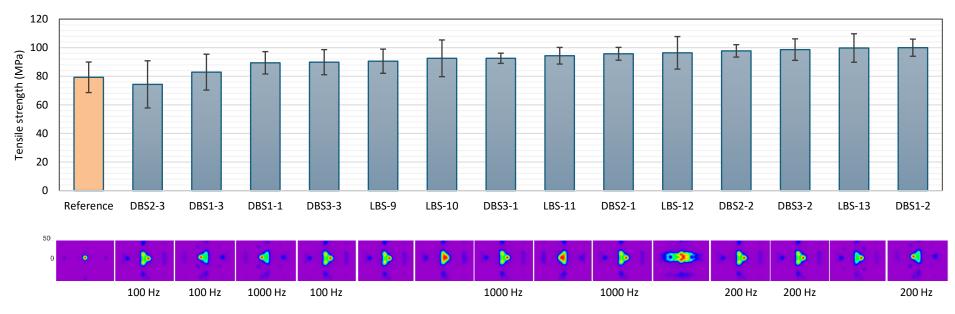
© WMG 204 Pasquale Franciosa (WMG), "Advances in Laser Welding Using Beam Shaping Bolster Green Transport Future", EPIC Technology Meeting 2024

Autogenous laser welding of 6xxx series aluminium

120 100 Tensile load (MPa) 0 0 08 0 08 20 0 Reference LBS-2 LBS-3 LBS-4 LBS-6 LBS-7 LBS-8 LBS-9 LBS-11 LBS-12 LBS-5 LBS-10 LBS-13 500 0 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500

Testing CBC-OPA CIVAN dynamic beam shaping

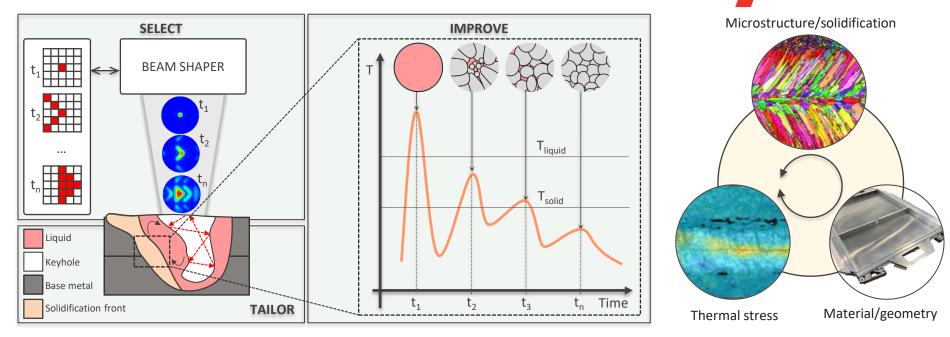
AA6061 overlap weld: 0.4 mm to 0.8 mm; full penetration weld


Venkat et at. "Fast thermal cycling during laser welding of AA6061 alloy with dynamic beam shaping in the MHz regime to control solidification cracking", under review, 2024

Pasquale Franciosa (WMG), "Advances in Laser Welding Using Beam Shaping Bolster Green Transport Future", EPIC Technology Meeting 2024

Autogenous laser welding of 6xxx series aluminium

Testing CBC-OPA dynamic beam shaping


AA6061 overlap weld: 0.4 mm to 0.8 mm; full penetration weld

Venkat et at. "Fast thermal cycling during laser welding of AA6061 alloy with dynamic beam shaping in the MHz regime to control solidification cracking", under review, 2024

• WMG 204 Pasquale Franciosa (WMG), "Advances in Laser Welding Using Beam Shaping Bolster Green Transport Future", EPIC Technology Meeting 2024

Which beam shape/sequence produces the optimal weld properties?

- The challenge: more flexibility translates to more complexity during the process development
- Need for a holistic approach (multi-physics, multi-scale,...)

Conclusions

The potential of beam shaping moving forward

Potential for **servitisation**: manufacturers will be able to build products on-demand, without the need of re-investment in new equipment, thereby enabling rapid **repurposing**

Reconfigurability challenge

Acceptance challenge

Connectivity challenge

Controllability challenge

Conclusions

The potential of beam shaping moving forward

Potential for **servitisation**: manufacturers will be able to build products on-demand, without the need of re-investment in new equipment, thereby enabling rapid **repurposing**

Reconfigurability challenge

Acceptance challenge

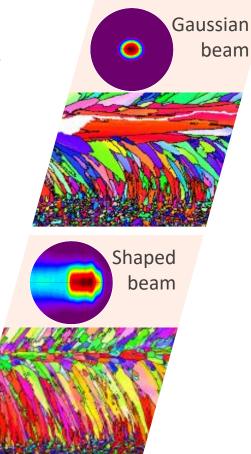
Connectivity challenge

What can we do for you?

Lasers4MaaS - Laser-as-a-Service Digital Platform with Dynamic Beam Shaping for Acceleration of Smart, Decentralised and Sustainable Factory of the Future

Funded by the European Union

This project has received funding from the European Union's HORIZON-CL4-2024-TWIN-TRANSITION-01-03 under grant agreement No 101178719. Project kick-off Jan 2025.


What can you do for us?

- Discuss challenges in laser welding where controlled thermal cycling via beam shaping may help to improve functional properties
- Become member of the "Industrial Advisory Board" of Lasers4MaaS

Thank you, any questions?

E-mail	Social Media	
p.franciosa@warwick.ac.uk For further information please contact: Pasquale Franciosa Head of Laser Beam Welding Group at WMG Tel: +44(0)7440022523 Email: p.franciosa@warwick.ac.uk	LinkedIn: Pasquale Franciosa	

Pasquale Franciosa (WMG), "Advances in Laser Welding Using Beam Shaping Bolster Green Transport Future", EPIC Technology Meeting 2024