

# How CO<sub>2</sub> lasers contribute to battery manufacturing

and help reduce carbon footprints

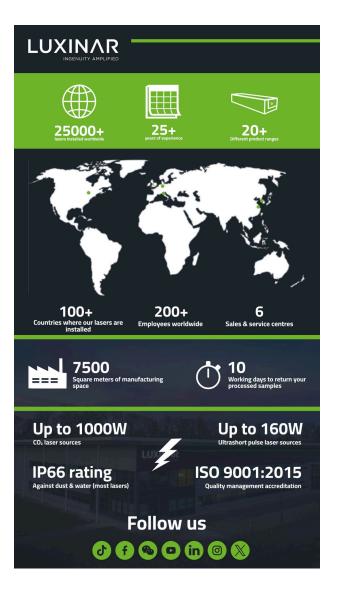
## **Christian Dini**

Commercial Manager Central & Northern Europe christian.dini@luxinar.com

EPIC Online Technology Meeting on Industrial Laser Processes for Automotive and Electro Mobility

Lasers4 Batteries




#### Table of contents

- Introduction to Luxinar
- Why use CO<sub>2</sub> lasers in battery applications
- Case study separator foils
- Case study unwrapping prismatic cells
- Conclusion











## Industries & applications

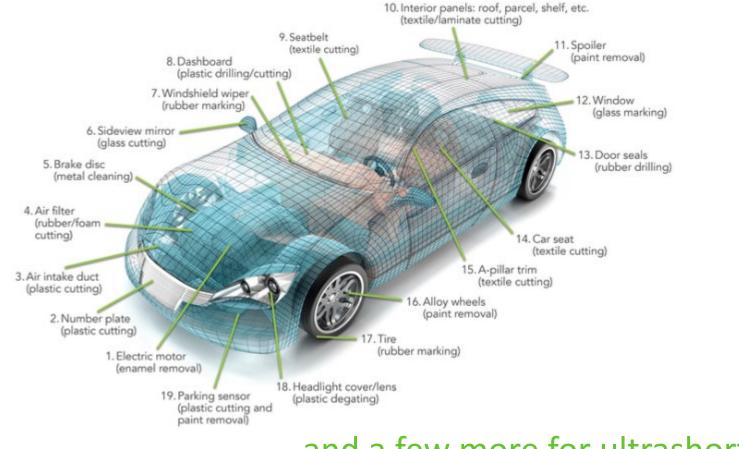








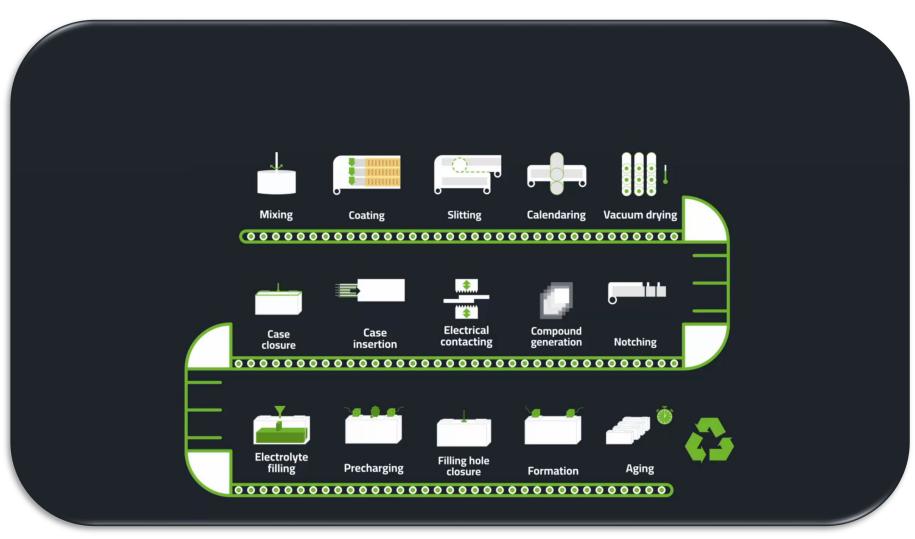
About 3000 Application reports on file











#### 19 applications for Luxinar CO<sub>2</sub> lasers on a car



... and a few more for ultrashort pulse lasers



## Luxinar lasers in battery manufacturing



Christian Dini - Luxinar - EPIC Online Technology Meeting on Industrial Laser Processes for Automotive and Electro Mobility

Lasers4 Batteries



#### USP Laser LXR<sup>®</sup> Series



#### Notching of Electrodes (copper)

## CO<sub>2</sub> laser SR Series



## Cutting of (ceramic coated) Separator

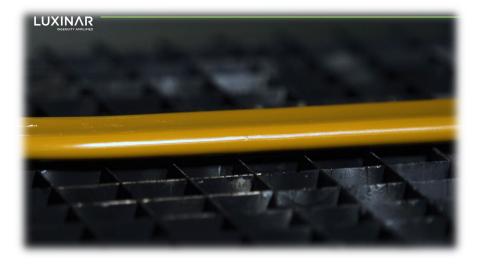


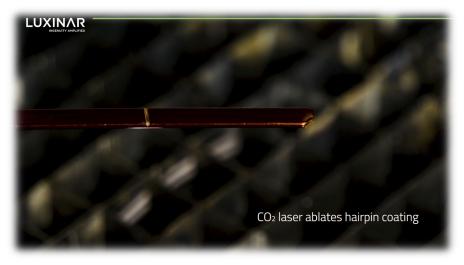


#### USP Laser LXR<sup>®</sup> Series



## CO<sub>2</sub> laser OEM Series





#### Surface texturisation of electrodes

## Ablation of heat shrink film

Lasers4 Batteries







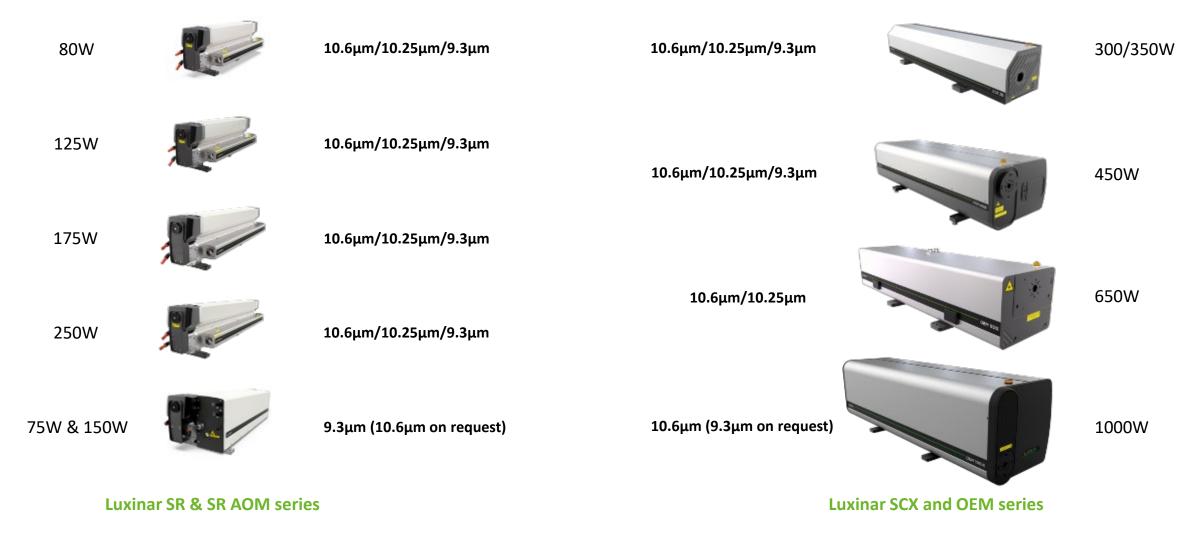
#### CO<sub>2</sub> laser SR Series



#### Cleaning of filler port

Lasers4 Batteries




# CO<sub>2</sub> lasers

First industrial CO<sub>2</sub> lasers became available 1964. Whilst high power CO<sub>2</sub> lasers have mainly been replaced by fibre laser technology, the range of low power ( $\leq 1 \text{ kW}$ ) demonstrates continuous growth ever since.

A mature technology for industrial processes, offering several tens of thousands of hours of operation, literally maintenance free.



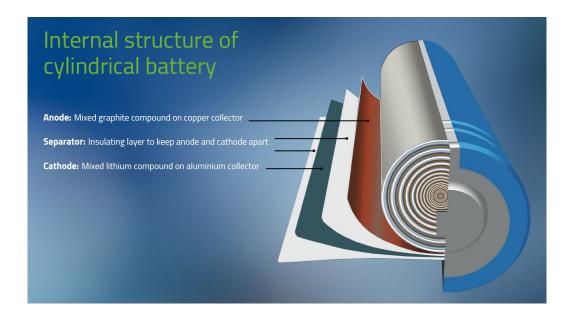
## Sealed CO<sub>2</sub> laser sources





# Why use CO<sub>2</sub> lasers for batteries?

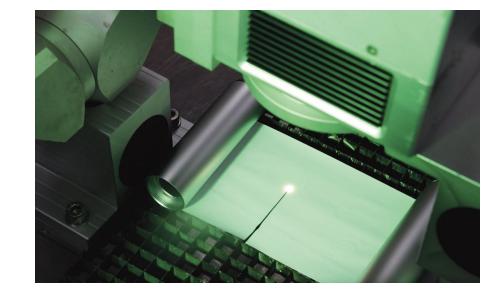
- Presence of organic material responding well to  $CO_2$ wavelengths (9.3  $\mu$ m – 10.25  $\mu$ m – 10.6  $\mu$ m)
- Maintenance-free
- Longevity (typical service life in the range of 30 50.000 hours, which is comparable to or even exceeding pump diodes / seed lasers of solid-state USP lasers)
- Low refurbishment cost (total cost of ownership)


Christian Dini - Luxinar - EPIC Online Technology Meeting on Industrial Laser Processes for Automotive and Electro Mobility

Lasers4 Batteries



# CO<sub>2</sub> laser case studies


- Cutting of separator foils
- Unwrapping prismatic cells





# CO<sub>2</sub> laser cutting of separator foils

- Replace mechanical cutting process
  - No force applied to thin material
  - No tool wear
  - No chipping of ceramic coatings > dust contamination



Lasers4 Batteries

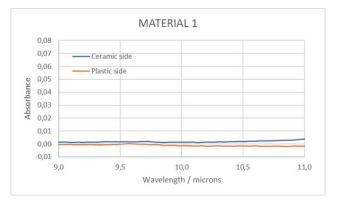
- Lower investment than for USP-Laser
  - Simple integration (laser safety)
  - Long wavelength less sensitive for optics failure (scratches...)

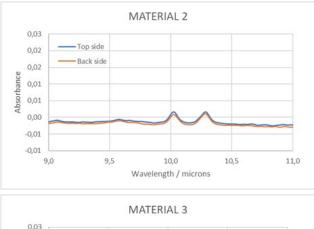


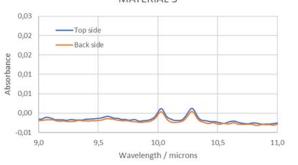
## **Experimental approach**

- 1. The experiment set out to investigate **the material interaction** with **different CO<sub>2</sub> laser wavelengths**.
- It was carried out utilising a Luxinar MULTISCAN<sup>®</sup> VS, swapping out three laser sources with different wavelengths of 9.3 μm, 10.25 μm and 10.6 μm.
- 3. To allow direct comparison, all three wavelengths were used at 100 W at the output. For the same reason, a scan head with a 10 mm aperture was used for the shorter wavelengths, and a 14 mm aperture was used for the 10.6 µm laser, leading to spot sizes around 240 µm for the 9.3 µm and the 10.6 µm. A spot size of 270 µm was achieved for 10.25 µm, considered close enough for an initial comparison.




## Material under test


Material 1 – Predominantly PE-based substrate with a ceramic coating applied on one side, identified by the matte finish versus the glossy finish of the raw PE.


Materials 2 & 3 – Uncoated materials with the ATR-FTIR scans indicating a higher concentration of polypropylene within the composition.

\*Attenuated Total Reflection - Fourier Transformation Infrared Spectroscopy

#### ATR - FTIR\*







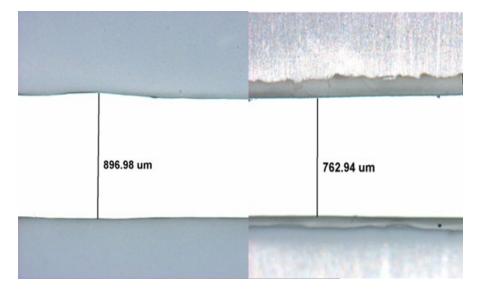


## **Cutting performance comparison**

| Vavelength | 9.3 μm.   | 10.25 μm         | 10.6 µm   |
|------------|-----------|------------------|-----------|
| Material 1 | 1200 mm/s | 1400 mm/s        | 1200 mm/s |
| Material 2 | 1200 mm/s | 4000 mm/s        | 1200 mm/s |
| Material 3 | 1400 mm/s | 4500 (6000) mm/s | 1800 mm/s |



# Cutting quality material 1 (ceramic coated)


Using the 10.25  $\mu$ m laser, the maximum process speed was between 1300 mm/s and 1400 mm/s.

Process quality is similar for all three wavelengths - while the material is cut cleanly with no burning or discoloration, the process causes some shrinkage and deformation of the material.

A burr is formed on the plastic side of the material, caused by curling of the edge towards the plastic side.

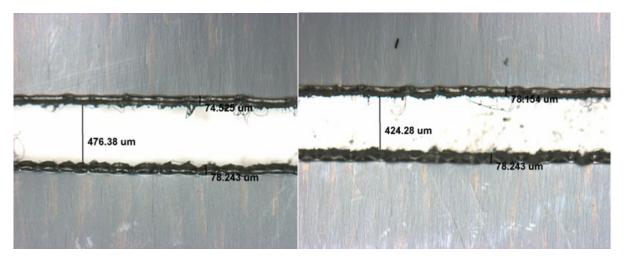
Mitigation of shrinking effect:

Higher cutting speeds through smaller spot size (higher power density)



left: view of ceramic side- right: view of plastic side @ 1300mm/s with 10.25 $\mu m$ 

All images shown are from cutting trials with 10.25  $\mu$ m, taken under a microscope with 5x magnification




# Cutting quality material 2

 $10.25 \ \mu m$  maximum process speed is significantly faster at around 4000 mm/s.

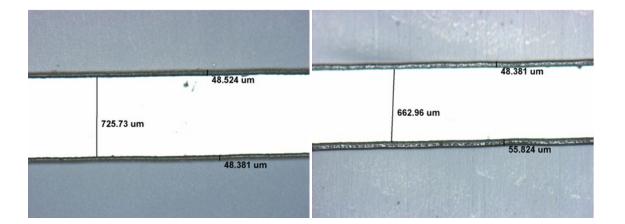
No burning or discoloration, but the edges appear slightly rough under the microscope, similar to the 9.3  $\mu$ m cuts (the 10.6  $\mu$ m results were a little smoother).

No noticeable burr or curling of the edge, although there is a heat affected zone (HAZ) of roughly 80µm and some filaments of material protruding from the edge.



left: view of top side – right: view of back side @ 4.500 mm/s with 10.25  $\mu$ m - further reduced meltback and no fraying

All images shown are from cutting trials with 10.25  $\mu$ m, taken under a microscope with 5x magnification




# Cutting quality material 3

FTIR spectrum very similar to that of Material 2. Significantly faster cutting was possible with the 10.25 μm wavelength.

Maximum speed was around 6000 mm/s, although this produces slightly ragged edges. Cleanest results were produced at 4500 mm/s, which is still more than twice the 9.3 μm and 10.6 μm speeds.

The material is cut cleanly with no burning or discoloration, but some shrinkage is observed; the gap between the cut edges is up **to 750 μm at 4500 mm/s, or 500 μm at 6000 mm/s.** 



left: view of ceramic side– right: view of plastic side @ 1300mm/s with 10.25μm



# Key take away for separator foil cutting

- CO<sub>2</sub>-Lasers do offer a reliable and cost-effective way to cut separator foils, in particular when the material composition is designed with the laser cutting process in mind (hence PP being part of the mixture)
- Higher wall plug efficiency of solid-state lasers can be compensated by high cutting speed of CO<sub>2</sub> laser when matched material is used. Power consumption per meter cut length to being considered.
- Comparable low total cost of ownership and simple operation
- CO<sub>2</sub> lasers are a standard solution to cut separator foils for battery manufacturers in Asia







## Laser unwrapping battery cells

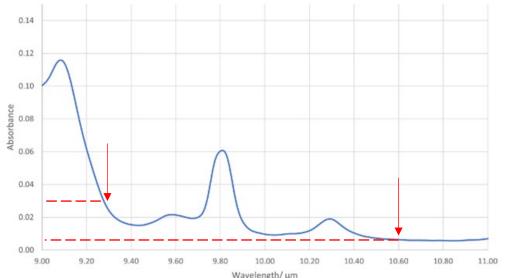
- Yield issues in the production of new cells lead to a significant rate of nonconforming battery cells
- Used batteries will require recycling after end of life (even a second life will come to an end one day)
  - Demand for automated recycling will grow over time





# CO<sub>2</sub> laser-based unwrapping of battery cells

- Replace manual cutting/stripping/scraping/rubbing process
  - No force applied to housing (dents, scratches...)
  - Automation for repetitive results including documentation if required
- No hazardous, aggressive heavy chemical solvents required
  - No exposure of staff to those chemicals
  - No need for hazardous waste disposal


Lasers4 Batteries



## Experimental approach

Since the working area can be quite big, and even become 3-dimensional when ablating around corners for unwrapping a full prismatic cell, a 3-axis scan head with 30 mm aperture was used in combination with a **Luxinar OEM 45iX**. This laser delivers > **500 W** in power at **10.6 \mum**. The test setup also included a professional fume extractor with filter system.

Before testing at high power, a wavelength comparison was conducted to compare **9.3 \mum** and **10.6 \mum** lasers, since an ATR-FTIR scan of the material suggested 9.3  $\mu$ m might be more effective.





## Ablation test results

Contrary to expectations, the experimental results were in favor of the 10.6  $\mu$ m wavelength, achieving higher ablation rates.

For new batteries the maximum ablation rate is limited by the amount of heat introduced to the cell; it is important to stay well below the thermal damage threshold of 80 °C within the cell.



## Ablation test results

A multi-pass strategy was applied with a cycle time **below 40 seconds for roughly 29 cm<sup>2</sup>** in area. Laser power was **450 W**, and temperatures remained in the **low 60 °C regime** throughout the process.

The surface was then wiped off with isopropanol. Alternatively, the ablated canister could undergo final cleaning by a NIR laser beam for a fully contact-free and automated process without the application of solvents.







# Conclusion battery unwrapping with CO<sub>2</sub> laser

The process can be automated with adequate cycle time to help recover nonconforming cells, saving valuable resources.

Since a lot of material is evaporated throughout the process, an adequate fume extraction system is essential.

For used/pre-assembled cells it proved feasible removing the heat shrink film wrapping even with residues of glue contaminating the surface.

Lasers recommend themselves as a preferred tool for a high degree of automation to avoid work that is potentially hazardous for health and substances with potential environmental impact.

Christian Dini - Luxinar - EPIC Online Technology Meeting on Industrial Laser Processes for Automotive and Electro Mobility

Lasers4

Batteries



## What can Luxinar do for you

We have an application database with roughly 3.000 feasibility reports growing every day – We support you in the laser process development

With decades of experience in laser system design layout we can help you finding the best solution for your laser machine requirements

## What can you do for Luxinar

Speak to us whenever you have a laser application for organic materials

Lasers4 Batteries



# Thank you for your attention

Christian.Dini@luxinar.com