

Intra-operative assessment of surgical margins and sentinel lymph nodes by Fast Raman spectroscopy

Ioan Notingher

School of Physics and Astronomy, University of Nottingham, UK

Basal Cell Carcinoma (BCC) Surgery

The commonest human cancer with around 150,000 cases each year in the UK.

Challenge: cut all cancer out spare healthy tissue

Incomplete margins: 11% (19.9% for BCC around eyes)

Br J Dermatol 2021; 184:1033-1044 DOI 10.1111/bjd.19660

Mohs micrographic surgery

(invented 1936)

Frederic Edward Mohs (1910 – 2002)

100% of resection surface recurrence rates <2% at 5 years

Mohs micrographic surgery

(invented 1936)

Frederic Edward Mohs (1910 – 2002)

100% of resection surface recurrence rates <2% at 5 years

Frozen tissue

Diagnosis by Mohs surgeon

Current surgery

Future surgery?

Multi-modal spectral imaging

a Wide-field auto-fluorescence imaging

Tryptophan

Ratio=Collagen/Tryptophan

Segmented Ratio image

Collagen fluorescence Intensity

PNAS 2013, 110 (38), 15189-15194

Multi-modal spectral imaging

a Wide-field auto-fluorescence imaging

Collagen

Tryptophan

Ratio=Collagen/Tryptophan

Segmented Ratio image

Sampling points for Raman

MSH 70 segments (350spectra)

2×2mm²

BCC

Fat

Muscle

Dermis Inflamed D.

Epidermis Substrate Unknown

PNAS 2013, 110 (38), 15189-15194

Multi-modal spectral imaging

a Wide-field auto-fluorescence imaging

Collagen

Tryptophan

Ratio=Collagen/Tryptophan

Segmented Ratio image

Collagen fluorescence Intensity 1.5 1.2 1.2 1.2 1.2

Dermis Inflamed D. Epidermis Substrate Unknown

BCC

Fat

Muscle

MSH 70 segments (350spectra)

2×2mm²

PNAS 2013, 110 (38), 15189-15194

Raster-scanning (40,000spectra

Auto-fluorescence

Raman

BCC Muscle Fat Dermis Inflamed D. Epidermis

Outcome Diagnosis 1cm² tissue: 1500 spectra (20-60 min)

Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy PNAS September 17, 2013 | vol. 110 | no. 38 | 15189-15194

Gerwin Puppels

Gerwin Puppels

M

National Institute for Health Research

Mohs surgeons: Sandeep Varma Sunita Odedra Asish Sharma Anand Patel Richard Jerrom

Primary outputs:

(i) integrate the AF- Raman instrument into clinical pathway (Mohs surgery).

(ii) evaluate validity (sensitivity/specificity) and reliability (inter- and intra-user variability) in order to plan a definitive national diagnosis test accuracy study.

Step 1: Raman analysis

Immediately after excision

Time limit: 40 minutes

Step 1: Raman analysis

Immediately after excision

Time limit: 40 minutes

Proof-of-concept study

Recruitment period: March 2020 – July 2021

Split layers: 30 layers: 9 BCC +ve 21 BCC -ve

AF-Raman instrument	Sensitivity 89%	Specificity 81%
Mohs surgeons:	88%	93%
<i>Br. J Dermatol</i> 2016 175: 549-554	88-92%	58-85%

Ex vivo assessment of basal cell carcinoma surgical margins in Mohs surgery by autofluorescence-Raman spectroscopy: A pilot study Received: 29 August 2023 Revised: 5 October 2023 Accepted: 7 November 2023

DOI: 10.1002/jvc2.336

Diagnostic test accuracy study: Recruitment Sept 2022 – May 2023

Full-face layers: 125 patients (1 layer/patient): (56% female and 44% male)

	Sensitivity	Specificity
Raman vs. reference	67%	73%
Raman vs reference (exclude out-of-focus images)	96%	73%
Mohs surgeon vs. reference	86%	89%
Mohs surgeon vs. reference (EMC Rotterdam study 2016)	92-88%	58-85%

Reference = consensus panel 3 dermatopathologists

BJD British Journal of Dermatology Surgical Dermatology *Br J Dermatol* 2024; **191**:428–436 https://doi.org/10.1093/bjd/ljae196 Advance access publication date: 13 May 2024

Breast conserving surgery (BCS)

Residual tumour cells, further layer of tissue removed for microscopy

Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics

OPEN ACCESS

BM

Conclusion: One in five women who had breast conserving surgery in England had a reoperation. Reoperation was nearly twice as likely when the tumour had a carcinoma in situ component coded. Women should be informed of this reoperation risk when deciding on the type of surgical

~5000 re-operations per year (these patients are ~4 times more likely to die)

BMJ 2012;345:e4505 be informed of this reoperation risk when deciding on the type of surgical treatment of their breast cancer.

Invasive Breast Cancers

Tumour Score TS

Tumour Probability P

Integrated auto-fluorescence imaging and Raman Spectroscopy Imaging

PNAS 2013, 110 (38), 15189-15194.

Independent validation using whole lumpectomy specimens (51 samples from 51 patients)

Independent validation using whole lumpectomy specimens (51 samples from 51 patients)

10 lumpectomy samples histology "positive margins" AF-Raman "Positive" diagnosis for 10 specimen

100% sensitivity, 78% specificity

Tissue analysis time: Sample size: 4 x 6.5 cm²; 12-24 minutes.

Shipp et al. Breast Cancer Research (2018) 20:69 https://doi.org/10.1186/s13058-018-1002-2

Intra-operative assessment of lymph nodes

Annotation of the Raman spectra

Machine learning classification of whole lymph nodes **Combined AF-Raman scanning/classification**

Model 2: SLN +ve: one segment >350 µm or two or more segments (regardless of size)

96.97% specificity [95% CI 95.82-97.59]

80% sensitivity [95% CI 75.38-83.16]

> 13 true +ve, 64 true -ve2 false –ve : 2 false +ve

Breast Cancer Research and Treatment (2024) 207:223–232 https://doi.org/10.1007/s10549-024-07349-z

Representative examples of true positive

(Model 2 operating regime: 96.97% specificity)

Conclusions

- Integrated Raman spectroscopy and auto-fluorescence imaging can be used to detect BCC in whole resected tissue layers within 20-30 minutes
- No user training needed for diagnosis (objective diagnosis)
- Platform technology ("molecular fingerprinting")":
 - Basal cell carcinoma: diagnostic test accuracy (125 patients in the clinic)
 - Breast cancer surgical margins: prototypes + proof-of-concept
 - Sentinel lymph nodes (breast cancer): prototype + proof-of-concept

Acknowledgments

Dr K Kong Dr C Rowlands Dr D Shipp

Dr S Barkur

A Ghita M Larraona-Puy Dr Radu Boitor Dr A. Koloydenko

Prof H Williams Dr S Varma Dermatology Mohs surgeon

Dr S Elsheikh. H Khout F Pathologist Breast surgeon

Prof E Rakha

Dr S Koljenovic. G Puppels Pathology (RiverD team)

Funding:

National Institute for Health Research

Research Council

