

Noiseless InGaAs[™] * Avalanche Photodiodes. Their benefits in an LRF system.

Stuart Sendall APD Consultant

PhluxTechnology.com

* Noiseless InGaAs APDs are as those with an excess noise factor low enough to achieve an APD gain of over 100 without SNR deterioration.

About Phlux

 $\overline{\mathsf{O}}$

Established in 2020 by Prof Chee Hing Tan, Prof.
 Jo Shien Ng and Ben White

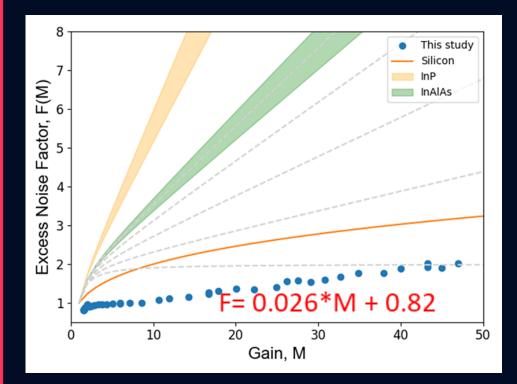
Based in Sheffield, UK

- World leading infrared sensors for imaging and communication systems.
- £4M Seed round in 2022 from major UK VCs.

Generating commercial revenues!

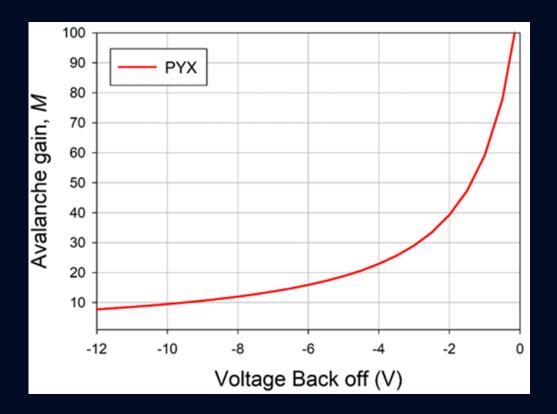
Aura – Noiseless[™] InGaAs APDs

Aura is a series of Noiseless[™] InGaAs APDs for LRF, LIDAR, OTDR and sensing


Key features:

- World-leading sensitivity
- Low dark current
- Negligible excess noise
- High responsivity
- Built to Mil-Std-883

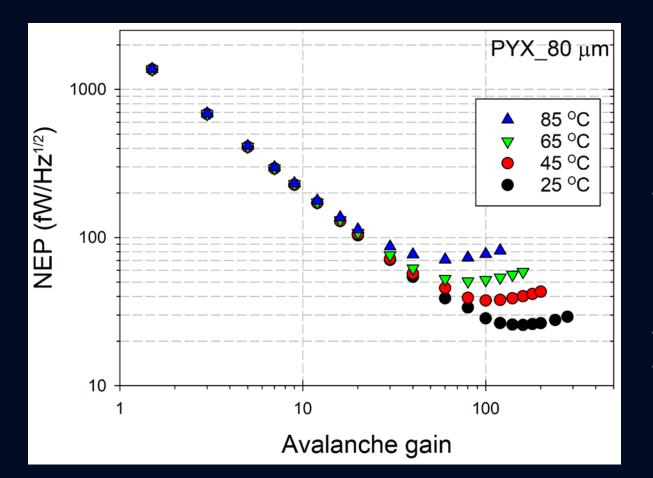
Why Noiseless InGaAs[™] APDs?


APD	Responsivity	Dark Current	Excess	Capacitance
(200 µm)	M=1, (A/W)	M=10, (A)	noise	(pF)
			M=20	
Phlux Genll	0.97	14.0	1.34	2.8
Laser	0.94	25	5.6	1.7
Components				
Hamamatsu	0.9	150*	9	1.5
Excelitas	0.93	45	9	2.5

Near Noiseless APD

Low Dark Current (especially low bulk dark current that gets amplified) Incredibly low Excess Noise compared to peers

Why Noiseless InGaAs[™] APDs?


APD Gain > 100

M=300 on 30um and ~100 on 200um devices (Compared to typical max 20 for competitors)

Extremely high gain-bandwidth product

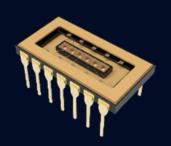
Noise Equivalent Power & High Temperatures

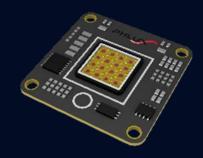
High operating temperature.


High Gain+Low Noise = NEP up to 12x lower than Traditional InGaAs APD

NEP at 85 °C only ~2x NEP at 25 °C when M=60

The coefficient of Vbr only 20mV/C compared to 120mV/C


Products today & Roadmap


- Noiseless InGaAs[™] APDs
- Available in Pigtailed, To-can, SMD, CER and die form
- High Gain Low-k Linear
 Mode

- Integrated modules delivering the ultimate sensitivity.
- APD + TIA integrated into receiver subsystem
- TE cooling and drive electronics
- Single Photon Counting Module (Geiger Mode)

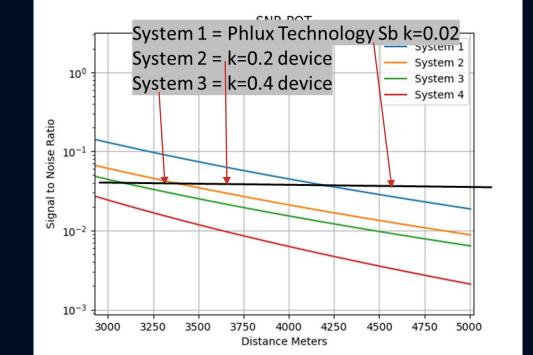
 Ultra-High Gain - Operates like a SiPM but can detect at 1550 nm

- Intelligent ToF imaging systems
- Focal plane array and ROIC

AIR SPAD – 1650 nm SPAD for gas sensing

QUDITS – 1550 nm SPAD for Quantum Comms

Grants also Help our R&D efforts - £1.3Million so far


+ To be Announced soon: €500k grant for work into Rad Hard High speed APD receiver module for Free Space Comms

Benefits to LRF?

Based on System modelling data supplied by an LRF design consultancy (part owned by the presenter) for three APD types in identical systems

System Modelling T	fool V11.1									-		×
Setup File Command	is Tools											
Rang	e Parameters			TX Parameters	Syste	em 1		Syster	m 2		System	3
Max Distance	5000	\$	m	Pulse Mode	Power	÷		Power	4]	Power	3
Visibility	23	\$	km	Power Units	Watts	\$		Watts	÷	}	Watts	
Wavelength	1550	+	nm	Energy Units	UJ	+		uJ	¢		uJ	
Target Height (y)	2.3	-	m	Pulsewidth	14	÷	ns	14	¢	ns	14	1
Target Width (x)	2.3	+	m	Divergence Y (fast perpend.)	1.0	\$	mrad	1.0	\$	mrad	1.0	
Target Reflectivity	30	\$	96	Divergence X (slow parallel)	0.4	÷	mrad	0.4	¢	mrad	0.4	
Range Points	100	-		Pulse Power/Energy	50		W	50		w	50	
Transmittance o	0.1000			TX Derived	Syste	em 1		Syster	m 2		System	3
Round Trip Loss	0.4343		dB/km	Peak Pulse Power	50	D	w	50		w	50	
Plotter		RX Parameters	Syste	em 1		Syster	m 2		System	3		
Plot Results	SNR POT	\$		RX Diameter	25	÷	mm	25	¢	mm	25	
Plot	All	+		RX Focal Length	50	÷	mm	50	4	mm	50	
				Detector Size	200	÷	μm	200	÷	μm	200	
				Filter Width	30	÷		30	¢		30	
				Solar Power	50	÷		50	÷		50	
				Optics Efficiency	90	÷	%	90	¢	%	90	
				Responsivity	1.0	-	A/W	1.0	-		1.0	
				Gain	61	Ť		20	-		20	
				Excess Noise Factor	1.8	*		5.5	÷		9.0	
				Dark Current @ M = 1	0.8	÷		1.5	÷		3.7	
				Preamp Gain	20	÷		20	4		20	3
				Bandwidth	50	÷	MHz	50	¢	MHz	50	
				RX Derived	Syste	em 1		Syster	m 2		System	3
				Receive Divergence	8.0		mrad	8.00		mrad	8.00	
				Receive FOV	4.0		mrad	4.00		mrad	4.00	_
				RX Solar	3.75€		W	3.75e-		W	3.75e-0)
				Preamp Noise	1.3		pA/√Hz	1.338	-	pA/√Hz	1.338	_
				Shot Noise Dark	1.316		A/√Hz	1.03e-		A/√Hz	2.06e-12	
				Shot Noise Solar	2.696		A/√Hz	1.54e-		A/√Hz	1.97e-12	-
				NEP APD *Mcl	2.156		A/√Hz	5.14e- 8.98e-		A/√Hz	1.03e-13	-
				NEP System in BW	Syste		W rms	Syster		W rms	1.24e-0	-
				Required SNR	0.02			0.02	11 2		0.02	
				SNR Distance GEO	1178	-	m	8078.9	600	m	6878.06	
				SNR Distance SYS	> 50		m	4933.2		m	4420.82	-
				SNR Distance POT	4922		m	4055.6		m	3724.75	_

A Phlux Aura APD based LRF could have a Rx lens of 15mm diameter in comparison to a 25mm Rx lens for k=0.2 APD - yet still offer same performance. Or 20-30% longer range with same Rx optic – customer can choose which benefit he desires.

Thank you

To find out more, visit our website PhluxTechnology.com

stuart.sendall@phluxtechnology.com

PhluxTechnology.com

