Working towards spaceborne lidar with wall-to wall coverage for bare-Earth topography and vegetation change mapping: Small-sats and nove laser sources

Global Lidar Altimetry MISsion: GLAMIS

University of Edinburgh:

Fraunhofer Centre for Applied Photonics: UK Astronomy Technology Centre: Resilience Constellation Management Ltd.: Space Flow Ltd.:

University of Strathclyde:

Steven Hancock, Matthew Purslow, Robbie Ramsey, Johannes Hansen, Ian Davenport, Euan Mitchell, Iain Woodhouse, Kristina Tamane

Peter Schlosser, Jack Thomas, Emma Le Francois, Gerald Bonner, Haochang Chen, Paul McCartney, Ludwig Prade Patrick Smith, Stephen Todd, David Lunney, Donald Mcleod Richard Tipper, Andy Shaw, Jess Roberts Callum Norrie Chris Lowe, Ciara McGrath

University of Strathclvde Glasgow

GLAMIS

Resilience [†] Steven.hancock@ed.ac.uk Constellation

UK Astronomy Technology Centre

Need for vegetation structure data

Daily **Hail**.com

How blackbirds help us beat the blues: Seeing birds in your garden 'can cut the risk of suffering stress and depression'

- · Living nearer to bird life can improve mental health new research suggests
- Exeter University study shows those living close to birds reduce the risk of stress and depression
- The study showed that 274 people exposed to bird song saw a fall in stress levels

By VICTORIA ALLEN SCIENCE CORRESPONDENT FOR THE DAILY MAIL PUBLISHED: 20:14 EDT, 24 February 2017 | UPDATED: 20:26 EDT, 24 February 2017

Lidar measurement

3

Spaceborne lidar missions

NASA LITE: 1994

• Technology demonstrator

NASA ICESat/GLAS: 2003-2009

Ice elevation and volume

NASA Calipso/CALIOP: 2006-2023

Cloud profiles

NASA CATS: 2015-2017

Cloud profiles

ESA Aeolus/ALADIN: 2018-2023

• 3D wind speed

NASA ICESat-2/ATLAS: 2018-

Ice elevation and volume

NASA GEDI: 2018-2023

• Forest biomass and structure

CNSA TECIS: 2022- (?)

• Dual wavelength

Lidar data

- Bare-Earth topography
- Tree height and cover

This enables (amongst others)

- Flood modelling
- Biomass mapping (underpins many other efforts)

Many remote sensing techniques are collected operationally

- There are no globally continuous lidar datasets
- There is no long-term (decadal) lidar dataset

Increasing lidar coverage

Which parts could we adjust to maximise coverage per unit cost?

- **Instrument:** Laser and detector efficiencies improved with new photonics
- **Platform:** Maximise payload power and telescope area per unit cost
- **Processing:** Reduce energy requirements with signal processing

ROYAL SOCIETY OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage

Davenport I. Woodhouse I. 2021 Requirements

for a global lidar system: spaceborne lidar with

Steven Hancock¹, Ciara McGrath², Christopher Lowe²,

lan Davenport¹ and lain Woodhouse¹

¹School of Geosciences, University of Edinburgh, Crew Building, Edinburgh EH9 3FF, UK Applied Space Technology Laboratory (ApSTL), Department of Electronic and Electrical Engineering, University of Strathchyde, 204 George St, Glasgow G1 1XW, UK

(D) SH. 0000-0001-5659-6964; CM. 0000-0002-7540-7476

wall-to-wall coverage. R. Soc. Open Sci. 8: https://doi.org/10.1098/rsos.211166

211166

GLAMIS: Diode lasers

Compared to solid-state, diode lasers offer

- Higher efficiencies
- Lower size, mass, complexity and cost
- Lower peak power

Requires a different modality

- Pulse-compressed lidar
- Pulse-train

remote sensing

MDPI

rticle

Assessing Novel Lidar Modalities for Maximizing Coverage of a Spaceborne System Through the Use of Diode Lasers

Johannes N. Hansen ^{1,*}⁽⁰⁾, Steven Hancock ¹⁽⁰⁾, Ludwig Prade ², Gerald M. Bonner ², Haochang Chen ², Ian Davenport ¹⁽⁰⁾, Brynmor E. Jones ² and Matthew Purslow ¹

GLAMIS constellation

Characteristic	Value		relative intensity O O H H N O 5 O 5 O
Altitude	500 km		
Beam footprint	30 m		
Peak power	>= 4W		2
Pulse length	<= 33 ns		10- 00-
Average power	0.13 W		↓ ↓
Laser	diode laser, ~ 850 nm		· · · · · · · · · · · · · · · · · · ·
Laser efficiency	>= 10%		D. D
Detector efficiency	58%		stance /
Payload power	120 W		3 821
Telescope diameter	58 cm		
Number of lasers	30		ca 214 (2024) 809–816
Swath width	900 m (4.5 km i	f 20% sampling)	stronautica
Spatial coverage Number of satellites		ELSEVIER journal homepage: ww	w.elsevier.com/locate/actaastro
<u>5 year repeat</u>	Annual repeat	Research Paper Spacecraft and optics design considerations for a spaceborne lidar mission	
100% 1	6		
20% 1	2	with spatially continuous global coverage	

Christopher John Lowe^a, Ciara Norah McGrath^b, Steven Hancock^c, Ian Davenport^{c,g}, Stephen Todd^d, Johannes Hansen^{c,f}, Iain Woodhouse^c, Callum Norrie^e, Malcolm Macdonald^{a,*}

Next steps needed

Essential

- Diode + driver efficiency raised
- TRL raised to 6
- Power requirements finalised (noise)
- 20% or 100% sampling decided (or configurable?)
- Instrument design
- Satellite platform selected
- Funding to launch identified (1 demonstrator then constellation)

Desirable

- More efficient detector
- Spatial algorithms made robust
- Deployable optics
- Analysis Ready Data product plans?

Steven.hancock@ed.ac.uk

Bringing the world into focus

11