

An indie Semiconductor Company

State-of-the-art Dispersion Management, Optical Filtering, and Low Noise Lasers for QKD Systems

Marc-Andre Laliberte

Product Line Manager, Optical Communications

April 22nd, 2024

EPIC Online Technology Meeting on Quantum Communication

Extensive Market Coverage

Marc-Andre Laliberte EPIC Online Technology Meeting on Quantum Communication

The information contained in this presentation is proprietary. © 2024 by TeraXion

Technological Expertise / Experience

Design	Integration Te	esting
Fiber Bragg gratings	State-of-the-art tailored fiber Bragg gratings	
Semiconductor lasers	Narrow linewidth DFB semiconductor lasers	
Electronics	Low noise drive and locking electronics	
Packaging	Packaging for prototyping: Die bonding, wirebonding, micro-optics, pigtailing, etc.	
Silicon photonics	Silicon photonics optical functions	

The information contained in this presentation is proprietary. © 2024 by TeraXion

Innovative Photonics Components, for QKD

Marc-Andre Laliberte EPIC Online Technology Meeting on Quantum Communication

STANDARD & TAILORED PRODUCTS

- » Chromatic dispersion management
- » Optical filters
- » Lasers

Chromatic Dispersion Management

COMPENSATION AND EMULATION

DCML and TCDMX-SM

- To control the time envelope of an attenuated pulse and <u>maximize</u> <u>SKR for long links</u>
- C and L bands (DWDM)

CDE and TDCMB

- To test new concepts or system designs as part of R&D projects
- Can emulate 100's to 1000's of km
- C and L bands (DWDM)

PULSE STRETCHERS

PSR and **TPSR**

- Chirped FBGs to create/correct for delays for entanglement-based protocols
- To convert a multi-channel signal to multiple time-bins, for sequential detection
- All wavelengths

Optical Filters

Marc-Andre Laliberte EPIC Online Technology Meeting on Quantum Communication

High Reflectivity

- To clean pulses from unwanted spectral noise
- To maximize contrasts between signals

Low Insertion Loss

- To strongly suppress unwanted signal(s) (up R%=99.9999 with single FBG) and provide high isolation (up to 60 dB)
- To avoid the use of a circulator (<0.1 dB insertion loss)

Optical Filters – The Importance of Packaging!

Marc-Andre Laliberte EPIC Online Technology Meeting on Quantum Communication

RECOATED

- The recoat protects the FBG
- Wavelength vs T°: ~10 pm/°C
- Suitable for all types of FBGs
- The most economical choice!

ATHERMAL

- Stable wavelength from -5 to 75°C (mechanical T° compensation)
- Wavelength vs T^o = 0.7 pm/^oC
- Packages for reflection or reflection + transmission
- Multiple lengths to adapt to different FBGs
- Available for SM and PM FBGs

TUNABLE

- Temperature-controlled FBG
- Tunable over ± 30 GHz
- 2 pm accuracy
- 40 MHz_{p-p} stability over 24 hours at room T
- Modules for reflection, transmission, or both, with or without circulator
- Suitable for all types of gratings

A New Generation of Narrow-Linewidth Lasers

From Proprietary DFB Laser Chip to Laser Module

- Compact industrial laser for first generation products
- Narrow linewidth to minimize excess noise
- Previous generation is used in commercial systems and for R&D purposes

PSDFN (Hz²/Hz)

Engineering Projects

SILICON PHOTONICS

Optical Circuits & Functions

• Active components

Amplitude and phase modulators, photodetectors, variable optical attenuators, etc.

• Passive components

Couplers, splitters, low-loss waveguides, etc.

• Complex optical circuits

The information contained in this presentation is proprietary. © 2024 by TeraXion

ELECTRONICS

Low Noise Drive and Locking Electronics

Locking on:

- **Other laser** (Optical Phase Locking Loop OPLL)
- Frequency discriminator (FBG optical filter, etalon, optical frequency comb, ...)
- Quantum transition (atom, ion, ...)

PACKAGING

In-house Packaging for Prototyping

- Die Bonding,
- Wirebonding,
- Micro-optics
- +++

Our Mission

Marc-Andre Laliberte EPIC Online Technology Meeting on Quantum Communication

Staying at the forefront of technological development

TeraXion can help

- » Laser development
- » Locking/phase stabilisation
- » Integrated photonics

Design for manufacturing Optical packaging Module integration

YOU can help

- » Micro-optic components
- » QKD standardization
- » Insights and discussions

The information contained in this presentation is proprietary. © 2024 by TeraXion

Contact Us

INNOVATIVE PHOTONIC COMPONENTS

- Standard Products
- Tailored Products
- Engineering Projects

quantum@teraxion.com
www.teraxion.com

in @teraxion

