

Ultrafast Lasers in Precision Processing of Intraocular Lenses

EPIC Online Technology Meeting on Photonics for Vision and Eye Research

Dr. Altan YILDIRIM 03.June.2024

Ultrafast Laser Applications: Micromachining and Beyond

LUMOS LASER

Industry, Medical, Science

Already Industrialized

CONSUMER ELECTRONICS

Smart phones: chip dicing, microphone holes drilling, PCB drilling, glass cutting, etc., OLED Displays

MECHANICAL COMPONENTS

Medical Devices, Automotive Components, Watchmaking, Jewelry, Plastic Injection Tools.

MEDICAL APPLICATIONS

Surgery, LASIK, ophtalmology.

www.electrooptics.com www.oled-info.com

www.laserfocusworld.com

www.neec.com

Emerging Applications

GLASS PROCESSING

Drilling, coating removal, selective etching, 3D processing, etc.

MEDICAL and MEDICAL DEVICES

Eye diseases treatment, Intraocular lenses, cochlear implants, biocompatible surfaces, dermatology, tissue processing, etc.

SCIENCE

Neuoscience, bio-imaging, spectroscopy, atto-science, etc.

Photovoltaic, fuel cells, batterys.

www.lumoslaser.com

Why femtosecond laser?

Compared to other micromachining solutions, it offers:

- unprecedented precision and flexibility,
- no heat input on the material,
- no waste of tool, material, water or chemicals,
- **safety** with minimized human contact,
- processing any material: metal, polymer, glass, diamond, etc.
- suitable for industry 4.0, focus already on 5.0.

Challenges: Speed, Costs and New Applications

Practical drawbacks:

- speed: has to speed up for volume production,
- cost: at least 3x more expensive than conventional tools,
- service: complex serviceability.

Our Solution: GHz-Burst fs-Laser Technology Higher Machining Speed & Simple System Design

Lumos's breakthrough innovation

to improve industrial availability

A completely new laser design, offering

- √ 5-10 times higher processing speed*
- √ Low-power laser architecture
- ✓ Simplified laser modules available for industrial adaptation
- ✓ Easier serviceability
- √ Lower initial cost
- ✓ Up to 80% energy saving

over current femtosecond laser solutions.

^{*}Depends on the material.

Increasing the Speed: A Comparative Description

F. Ö. Ilday et al., Ablation-cooled material removal with ultrafast bursts of pulses. *Nature*, vol. 537, pp. 84–88 (2016).

Material Processing Speed

Highest line scribing efficiency to date for stainless steel and Ti

Maximum Specific Ablation Rate [(mm³/min)/W]			
Material / Laser type	Lumos Duro GHz	GHz-Burst Literature	Uniform fs/others
Aluminum	1.88	2.01 [1]	0.40 [2]*
Copper	0.52	0.73 [1]	0.18 [3]
Silicon	1.74	2.29 [1]	-
Stainless Steel	1.93	1.05 [1]	0.26 [4]
Titanium	2.07	-	0.68 [5]**

At least 3x improvement in all materials compared to ablation with uniform repetition rate Further parameter optimization needed to reveal full potential

^[1] G. Bonamis et al, Optics Express, 28, (2020).

^[2] J. Lopez et al, Journal of Laser Applications, 27, (2015).

^[3] H. Matsumoto et al, Proc. SPIE 10519, (2018).

^[4] B. Jaeggi et al, (LAMOM) XXII. Vol. 10091, (2017).

^[5] Sedao et al, Optics and Lasers in Engineering, 116, (2018).

- 7 years old start-up company
- Manufacturer of GHz Burst fs-lasers and micromachining stations
- Roots at the Bilkent University, Prof. Ilday's Ufolab
- Team with 2 usp laser experts and talented engineers, 3 PhD's.
- Founded by the inventors of the GHz Burst fs-laser technology
- Many R&D partnerships realized, collaborative mindset

Istanbul - Bogazici University Teknopark

Istanbul - Bogazici Univ. & Özyeğin Univ. Photonics Laboratories

Product & Technology Development Roadmap

Applications developed on Metal Micromachining, Coating Removal on Glass, Glass, Polymers and Research

2022 – DURO GHz Versa Dual Mode Laser Research & Metallic Materials Processing

2025 DURO GHz LP for Polymer Processing

2021 – Our MVP DURO GHz LP20

High value Metals and Spinel Glass Processing

High avg. Power for Research & Coating Removal over Glass

Product Duro GHz LP Series

Specifications and Features

2D Reconstruction - 4000 - 3000 - 2000 - 1000 - - 2000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000

DURO GHz LP Series

Up to 30W GHz-Burst Femtosecond Laser Module

- Up to 30W average power
- Up to 6000 pulses inside burst
- 4 GHz Repetition Rate
- Fiber laser design
- Adjustable burst shape
- Up to 150µJ burst energy @1030nm Pulse energy 300nJ
- Adjustable pulse duration 500fs 10ps

SAYEM Consortium Project & Pulsate Program

Intraocular Lens Processing

- Process development phase:
 Funded by European Commission (PULSATE programme), €150K.
- Manufacturing system development: Funded by TÜBİTAK, €700K.
- Full scale product performance demonstration

SAYEM Consortium Project & Pulsate Program

Intraocular Lenses are delicate medical devices

EDoF IOLs

The right solution for high demanding patients with the combination of great far to functional near vision. Say goodbye to Halo's and Glare.

View >

Trifocal IOLs

Discover our Trifocal IOLs with Sinusoidal Vision Technology(SVT®)

View >

Monofocal IOLs

Let your Cataract patients to enjoy clear far vision

View >

Toric IOLs

Your trusted partner in astigmatism

View >

SAYEM Consortium Project & Pulsate Program

IOL Processing by Laser - Feasibility

SAYEM Consortium Project

Studies on Processing Fresnel Rings onto the Polymer Surface

Microscopy images of Fresnel rings engraved on polymer:

Focus of the image is on the unprocessed material surface

Focus of the image is on the processed material surface

SAYEM Consortium Project

Studies on Processing Fresnel Rings onto the Polymer Surface

The profilometer image and depth profile of Fresnel rings engraved on polymer:

Resulting IOL Optical Properties

Monofocal to Enhanced Depth-of-Focus (EDOF) POC

SAYEM Consortium Project

LUMOS LASER

Cutting Studies on Intraocular Lens

- 1) Ablation with multipass
- 4 Cutting trial

2.6 x 2.6 mm square 600 µm depth Volume = 4.056 mm³

Collaboration Opportunities

What we offer?

- Talented team of usp laser experts
- Custom GHz Burst laser development
- Collaborative value-focused mindset

Looking for:

- R&D partnerships (Consortium, cluster, project-based, applab) for new application development
- Technical collaboration especially on material processing
- Deep-tech investment oppotunities

Thank you!

altan@lumoslaser.com

www.lumoslaser.com

