Optical Metrology: a navigation system for FEOL processes

Marcello Binetti senior scientist for novel applications

Why you do need metrology

The ideal process is uniform ...

on wafer chip-to-chip

run-to-run Today Tomorrow Next Year

in time

in space system-to-system & fab-to-fab

... but neither is our world ideal nor our processes uniform

Metrology helps us narrowing variances and navigating toward consistent processes & devices

What we can do for you

STADTRANDSIEL

Optical Metrology Company founded 1999 in Berlin

- > 25 years old
- > Spin-off of TU Berlin
- > 90+ employees
- > 3500 systems sold
- > Operating worldwide
- Member of Nynomic group

Our business:Process-integrated optical metrologyOur markets:Semiconductor and thin-film industry & academia
incl. lighting, laser, PV, glass coating ...

EPIC Online Technology Meeting on Photonics for Thin Films Fabrication and Characterization | LayTec AG | info@laytec.de | proprietary

costs

value

'isks

Optical metrology along the semiconductor manufacturing chain

Optical metrology along the semiconductor manufacturing chain

GaN/Si HEMT production – film thickness control during MOCVD and Etching

Typical E-Mode HEMT device stacks

p-GaN gate 10 nm 100 nm
AlGaN barrier 10 nm 30 nm
i-GaN channel layer 100 nm 200 nm
GaN/AlGaN buffer (various patented designs) complex strain-engineering 2-6 μm

- for cost reasons: large 200 mm & 300 mm silicon wafers and extreme uniform epi and etching is required
- optical in-situ control on the level of 0.5 nm (~1 atomic monolayer) is a must

① MOCVD: in-situ measurement and control of growth parameters

- Metrology tool: LayTec EpiCurveTT
- every ~2 s measurement of
 - > temperature
 - multi-λ reflectance
 - local curvature
- at center of specific wafer
- on radial scan across wafer
- in-situ measurement sensitivity is constant from first to last layer...
 - ... over typical growth times of hours
- layer-specific deviations can be detected > in real-time early in the process
- state-of-the-art: used for advanced process control

slow-motion visualization of reflectance measurement

- BUT:
 - limited accuracy for very thin, ternary layers
 - > only radial uniformity no full 2D XY results
- HEMT structure barrier layer
 - for the most critical layer, simultaneous thickness & composition measurement is not always possible

² Post epi wafer mapping

accurate measurement & fit of UV-Reflectance of HEMT product wafers

D-mode devices:

- determination of AlGaN barrier composition + thickness
- AlGaN barrier i-GaN buffer GaN/AlGaN buffer
- composition usually 3-4% above PL as UV-R is probing average composition
- also applicable for complex barrier designs with varying composition

UV-R fit: AlGaN composition of D-Mode

UV-R fit: AlGaN thickness of D-Mode

EPIC Online Technology Meeting on Photonics for Thin Films Fabrication and Characterization | LayTec AG | info@laytec.de | proprietary

metrology tool: LayTec EpiX

ex-situ wafer mapping

white light reflectance (full spectral fit) and photoluminescence

x,y mapping @ 250-2400 nm

best-in-class measurement performance and accuracy

- low spectral noise
- superior absolute accuracy
- superior 2D measurement uniformity
- advanced analysis algorithms

- light absorption in p-GaN top layer
 - lower signal & higher noise BUT

wafer-specific in-situ results allow improved fitting

p-GaN gate

AlGaN barrier

i-GaN buffer

GaN/AlGaN

buffer

③ Etching End-Pointing

standard: Optical Emission Spectroscopy

requires etch-stop layers only sensitive to interfaces

advanced: UV-Reflectance

- example: in-situ reflectance during growth/etch of GaN/AlGaN HFET structure
- > Epi:
 - Fabry-Pérot-Oscillations (FPO) due to increasing layer thickness during epitaxial growth
 - highly accurate layer thickness measurements
 - 'time inverted' reflectance trace gives preview to etch transient measurement
- Etch:
 - FPOs due to shrinking layer thickness during etching
 - real-time analysis based on pre-existing measurements enables EPD anywhere in stack

Epi

Etch

0.3

Summary

What can we do for you:

- Run-to-Run, System-to-System, & Fab-to-Fab uniformity
- LayTec connected metrology helps you narrowing variances and navigating toward consistent processes & devices

What can you do for us:

- > tell us about your FEOL challenges ...
- > ... and let us work together to overcome them

Choose LayTec metrology as your navigation system

Thank you for your attention!

EPIC Online Technology Meeting on Photonics for Thin Films Fabrication and Characterization | LayTec AG | info@laytec.de | proprietary

Connicted

M±trology

Knowledge is key

www.laytec.de

