

Photonic Quantum Computing

Highest requirements on Integrated Photonics

4.0 K 23 % 800 M

4.0 K 23 % 800 M

Dr.-Ing. Stefan Hengesbach

Quix

EPIC Online Technology Meeting on Quantum Computers March 18th, 2024

Design of a photonic quantum computer

Measurement-Based Quantum Computing

One way quantum computing is very resource efficient, establishing the cluster state is challenging.

Mikkel V. Larsen et al. "Deterministic generation of a two-dimensional cluster state. *Science* **366**,369 372(2019). DOI:<u>10.1126/science.aay4354</u>

Workings of measurement based quantum computing:

- Create a large entangled network of (photonic) qubits
- Apply only single-qubit gates
- Measure the qubits in selected basis

Feedforward

3

Depending on measurement outcome change basis and measure another qubit

Core technology developed, based on European value chain

The only photonic quantum processor commercially available

10x more fully programmable modes than nearest known competitor

Core element of R&D activities in Europe

QuiX's mature processor is widely used in current activities and makes QuiX a key partner

Scalable

Beyond 1,000 qubits is just engineering

Award-winning foundational technology

20-mode quantum photonic processor best in class awarded with Prism Award '23

Product Portfolio

• QuiX Quantum sells hardware and also cloud access as a service.

• QuiX Quantum sells OEM processors as well as full Quantum Computing systems.

Solutions for

Customers

Cloud access

5

Photonics outperform existing quantum technologies

		Photonics	Superconductors	Ion Traps	Quantum Dots	Cold Atoms
Qubit Quality	Gate fidelity	99.9%	99.9%	99.9%	99%	99%
	Lifetime Qubit	œ	1 ms	50s	1 to 10 s	100 ns
Main Specifications`	Temperature	Room temperature	Near OK	NA	Near OK	NA
	Integration	All-to-All	Nearest Neighbors	All-to-All	Nearest Neighbors	Nearest Neighbors
	Scalability	Horizontal	Horizontal	NA	NA	Horizontal
	Notable players	$\bigotimes X \land N \land D \lor \Psi PsiQuantum$ $\bigotimes_{ORCA} \qquad \bigotimes_{Q \lor U \land N \lor U \lor M}$	IBM IQM Google	ionq Honeywell	O ^{Silicon} ^{Quantum} computing intel	الله PASQAL کې ColdQuanta

What EPIC can do for us:

- Assembly and Packaging, especially fiber coupling
- Use cases for Quantum Photonic Processors and Computers
- High speed electronics esp. for electro-optic modulation
- SNSPDs and cryogenic cooling
- High speed and ultra-low loss modulators for PIC integration
- High quality components like fibers and connectors
- Inspection of PICs

What we can offer EPIC:

- QaaS: Quantum Computing as a service
- Components, such as the world leading quantum photonic processors for loan, sale or in-kind contribution to projects
- Activities in standardization of software stack
- On the roadmap: universal Quantum Processor and Universal Quantum Computer

Sales and strategic collaborations team: Collaborations, tenders, projects, sales: sales@quixquantum.com

Low loss photonic chips

Sufficient transmission has been demonstrated. All relevant building blocks are developed.

Fast and low loss Phase shifters

There are several ways to implement phase shifters in crystals and in passive waveguides.

Beam sources

- Currently there are competing approaches
- Single Photons vs. Squeezed light

Control electronics & Detectors

- Multiple manufacturers
- Good progress through continuous engineering

Photonics has unique advantages for universal quantum computing

