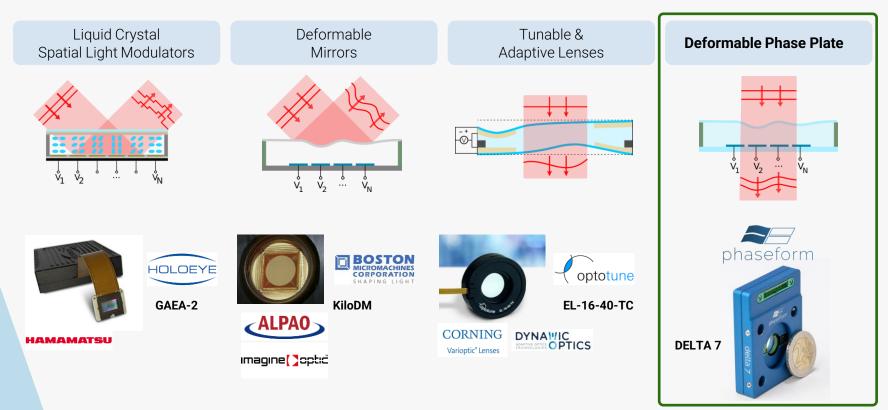


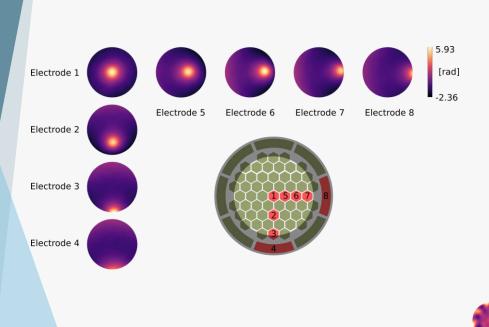
Seeing Beyond Limits: Phaseform's DPP and the Evolution of Adaptive Optics in Ophthalmology

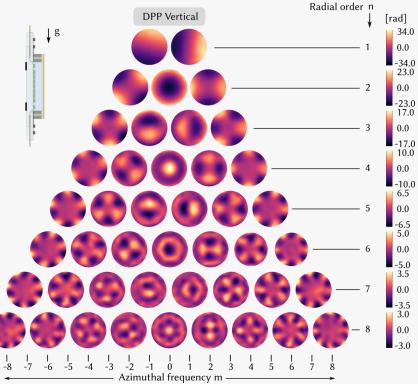
Dr. Pouya Rajaeipour CTO & Co-founder Phaseform GmbH, Germany

3 June 2024. 15:00 - 17:00 CEST

EPIC Online Technology Meeting on Photonics for Vision and Eye Research




Deformable Phase Plate constitutes a New class of optical devices

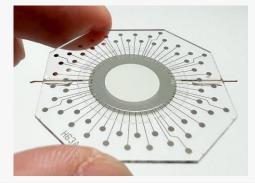


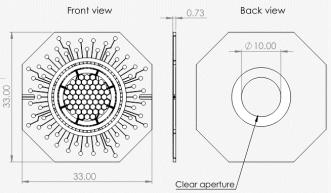
Zernike Mode Replication

Phaseform's Patented: Deformable Phase Plate (DPP)

Transmissive; Polarization & diffraction-free, Stackable

Ultra-thin and continuous-surface

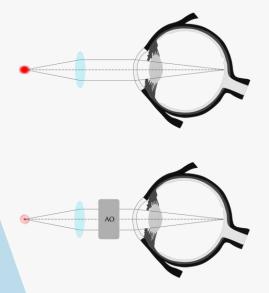


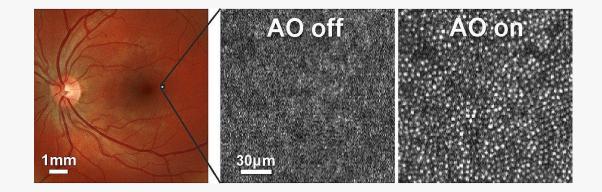

Easy integration & retrofits

Scalable; Wafer-level manufacturing

Technology

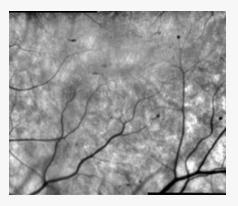
DELTA 7 Refractive Wavefront Modulator




Number of actuators	63
Maximum Peak to Valley	> 8 µm OPD
Response time	< 55 ms
Optical transmission	400 nm - 2200 nm (no AR coating): 80% at λ=800 nm
Hysteresis	< 1 %
Linearity	> 92 %
Laser Induced Damage Threshold	10 W/cm² for 10 sec @ 1070 nm CW
Optical aperture	10 mm ø
Thickness in optical path	0.87 mm
Mounting	30 mm cage system, SM1 tubing
Highest order of correction	7th radial order Zernike

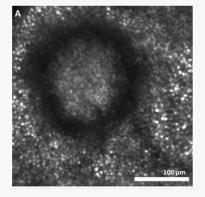
Adaptive Optics for Ophthalmology

Enabling cellular resolution retinal imaging


Courtesy of **Wolf Harmening** Department of Ophthalmology, University of Bonn

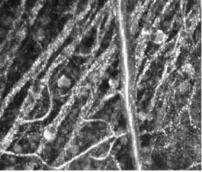
Adaptive optics enables Early detection of blinding eye diseases

Adaptive Optics-enabled retinal imaging


Diabetic Retinopathy subject

AO retinal camera shows microaneurysms making early intervention possible. Source: Profundus

AMD subject



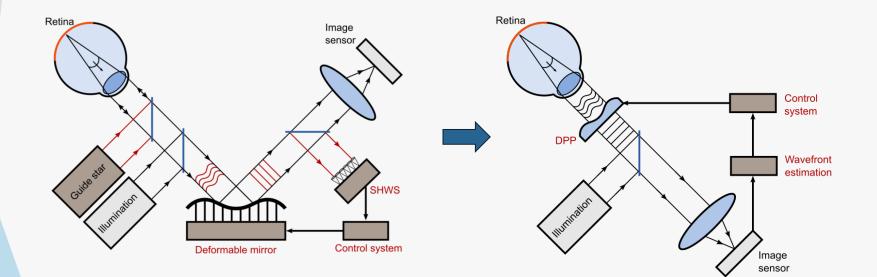
Cone mosaic surrounding a subretinal drusenoid deposit in a 73-year-old male with nonneovascular AMD. Source: Y. Zhang. et al. (2014)

Glaucoma subject

Glaucomatous retinal ganglion cells visible through AO-OCT. Note lower cell density and enlargement. Source: Liu, Zhuolin, et al. (2021)

EARLY GLAUCOMA

EXTREME GLAUCOMA

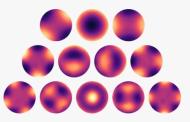


6

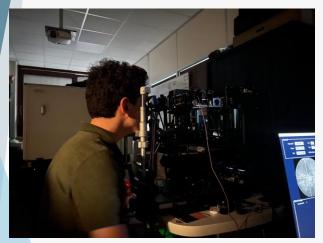
Refractive Adaptive Optics

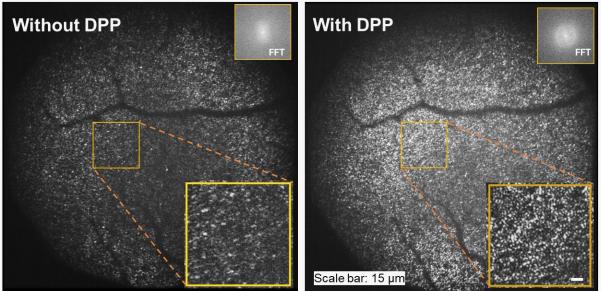
DPP for Ophthalmoscopy

> Plug-and-play AO experiment with existing full-field OCT-based ophthalmoscope



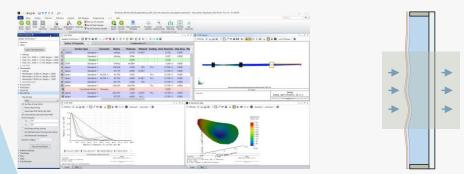
Courtesy of Dr. Kate Grieve, Dr. Pedro Mecê, and Dr. Maxime Bertrand at Institut Langevin in Paris


Aberration modes considered for wavefront sensorless correction



DPP for Ophthalmoscopy

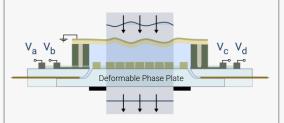
> Plug-and-play AO experiment with existing full-field OCT-based ophthalmoscope


Courtesy of Dr. Kate Grieve, Dr. Pedro Mecê, and Dr. Maxime Bertrand at Institut Langevin in Paris

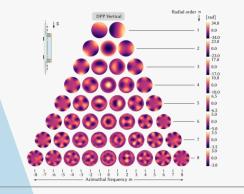
Wavefront sensorless measurement and **active compensation** of system and sample induced optical aberrations by DPP

DPP Zemax Model

- In the form of a dynamic-link library (DLL) that may be imported into the Zemax OpticStudio lens editor environment
 - > Based on the empirically measured characteristics and responses of a real DPP
 - Incorporates performance boundary conditions of DPP
 - » Beam diameter range between 6.0 mm to 10 mm
 - > Choice of optimization in Zernike (up to 36 modes) or Voltage space (63 electrodes)
 - > Calculates the corresponding optimized voltage values which may be applied in-situ



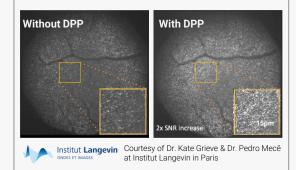
Visit <u>www.phaseform.com</u> to download and test the DPP's Zemax model for free



Concluding Remarks

A deformable mirror, but **transparent**

Replicates complex Zernike modes

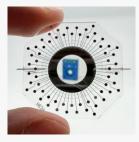


Enabling novel, more compact and performant **optical systems** & solutions

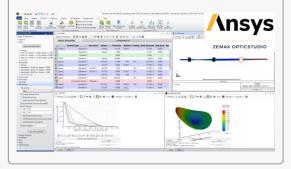
Phaseform Delta 7 DPP-based development kit FF-OCT retrofitted with Phaseform Delta 7

Online & social media:

Email: Web:


LinkedIn:

Twitter:


pr@phaseform.com www.phaseform.com linkedin.com/company/phaseform @phaseformgmbh

Digital model of DPP representing its **empirical** properties

 \rightarrow insert into OptiStudio just as you would insert a lens DLL

