HOLOEYE Photonics AG

Wide-Angle Diffractive Optical Elements: From Inverse Design to Quality Control

Andreas Hermerschmidt

Salzburg, 18./19.09.2024

- Short company introduction
- DOE design in the ,TEA' domain
- Higher-precision modelling options and related challenges
- Adjoint method in photonics for binary fan-out gratings
- Visualization and interpretation of the gradient in the spatial domain
- Additional simulation options trade-off between accuracy and speed
- Fabrication and characterization
- Conclusion and outlook

About HOLOEYE

Business Units

Spatial Light Modulators

Dynamic optical devices based on reflective or transmissive microdisplays for phase or amplitude modulation.

Diffractive Optical Elements

Standard components and custom design and production of Diffractive Optical Elements.

HOLOEYE

Pioneers in Photonic Technology

LCOS Microdisplays LCOS microdisplays and custom display & electronics design services.

Quick Facts

- Head Office: Volmerstraße 1, 12489 Berlin, Germany
- **Founded:** July 1999
- Form of Organization: German Aktiengesellschaft
- Shareholders: Privately-held company, 5 shareholders
- **Employees:** 35 40
- Distributing Companies: 10
- Cuality Management: ISO 9001-2015

DOE design – the ,TEA' domain

DOE design ,beyond TEA' - more precise modelling options

- Higher precision then TEA: solve Maxwell's equations !
- Various simulation-options for microoptical elements
 - RCWA (e.g. Synopsys DiffractMod, Lighttrans VirtualLab, S4, …
 - ➡ FDTD (e.g. Ansys Lumerical, meep, …)
 - ➡ FEM (e.g. JCMWave JCMsuite, [FreeFEM++], …)

https://web.stanford.edu/group/fan/S4/

*Disclaimer: **No recommendation** for any software, in particular not one of the commercial packages. Mentioned software packages are examples only

- Shared topics and issues for all mentioned methods
 - 1. VERY long computation times compared to TEA
 - 2. Algorithm(s) needed to do not only simulations, but optimizations

Adjoint method in photonics – ,inverse design'

- Making use of reciprocity of electromagnetic theory
- One forward and one ,adjoint' simulation, e.g. 2 x RCWA
- ⇒ From these two computations, a gradient ∂(FOM)/∂P can be computed
- Gradient search methods applicable
 FOM flexibility !
- Noticable similarity with IFTA with ,variable strength projections'

Optimization is possible for rigorous domain !

[1] C.M.Lalau-Keraly, S.Bhargava, O.D.Miller, E.Yablonovitch, 'Adjoint shape optimization applied to electromagnetic design', Opt. Express 21(18), pp 21693-21701 (2013)

[2] D.C.Kim, A.Hermerschmidt, P.Dyachenko, T.Scharf, 'Inverse design and demonstration of high-performance wide-angle diffractive optical elements', Opt. Express 28(15), p. 22321-22333 (2020)

[3] S. Bühling, F. Wyrowski, 'Improved transmission design algorithms by utilizing variable-strength projections', JOMO, Vol. 49(11), pp. 1871-1892 (2002)

Shape changes during optimization – local plots

Main changes during optimization for SNR or RMS: at lateral boundaries

- Precise fabrication of lateral shapes required !
- Next level of optmizations: predict proximity effects in fabrication and take them into account

HOLOEYE Pioneers in Photonic Technology

Approximate methods for larger unit cell sizes

Computation time can still be too large

Solutions

- a. Use more computational power
- b. Use approximations better than TEA faster than rigorous methods

For the second option (b.)

Pioneers in Photonic Technology

- Promising candidate is e.g ,(Vectorial) wave propagation method' WPM (Brenner1993, Fertig 2010)
- Prediction of step pertubation effects is possible
 - Considerable contribution to deviation from TEA model
 - Effects of mode-coupling not simulated, small(er) contribution for large unit cell, not ,too small' critical dimension
- Gradient methods based on approximate methods in use @Holoeye with very good results
- Of course: whenever possible, verification by rigorous simulation (e.g. RCWA) prior to fabrication

UC of binary DOE $18\mu m \times 18\mu m$, λ =532nm, PMMA Upper image: phase Lower image: amplitude computed by WPM

Challenges ,beyond the design'

Fabrication

Match the lateral shape

Pioneers in Photonic Technology

Match the depth (typically 1-2% is good enough)

Eye safety issues arise in laser + DOE applications if shape and depth precision targets are not met.

Measurement

HOLOEYE

- Choose how to set up the testing equipment
 - Flexible measurement, e.g. based on (calibrated) power sensor(s) during development iteration(s)
 - Transfer to spectrometer-based or camerabased measurement set-ups for volume production

A-laser exit aperture, B- wafer stage, C- moveable sensor

Summary and conclusion

- ,TEA' design methods often not suitable
- Rigorous methods can be used in optimizations based on the adjoint method
 - ➡ Fan-out gratings and full-pattern angle (FPA) >100° and <10% uniformity error</p>
- Approximate methods for larger unit cell sizes
 - Init cell sizes of a few 100µm and FPA 20°.. 40° and uniformity errors ≤5%
- Optimization options to suppress too small features
- Binary and multi-level DOE designs

