HOLOEYE Photonics AG

Wide-Angle Diffractive Optical Elements: From Inverse Design to Quality Control

Andreas Hermerschmidt

Salzburg, 18./19.09.2024

- \supset Short company introduction
- \supset DOE design in the , TEA $\hat{ }$ domain
- \Rightarrow Higher-precision modelling options and related challenges
- \Rightarrow Adjoint method in photonics for binary fan-out gratings
- Visualization and interpretation of the gradient in the spatial domain
- \Rightarrow Additional simulation options trade-off between accuracy and speed
- \supset Fabrication and characterization
- \supset Conclusion and outlook

About HOLOEYE

Business Units CONSIDER STATES AND RESERVE TO A LIGACY CONSIDER A LIGACY CONSIDERATION CONSIDERED A LIGACY CONSIDERATION

Spatial Light Modulators

Dynamic optical devices based on reflective or transmissive microdisplays for phase or amplitude modulation.

Diffractive Optical Elements

Standard components and custom design and production of Diffractive Optical Elements.

HOLOEYE

Pioneers in Photonic Technology

Pioneers in Photonic Technology

LCOS Microdisplays LCOS microdisplays and custom display & electronics design services.

- **Head Office:** Volmerstraße 1, 12489 Berlin, **Germany**
- **Founded:** July 1999
- **Form of Organization:** German Aktiengesellschaft
- **Shareholders:** Privately-held company, 5 shareholders
- **Employees:** 35 40
- **Distributing Companies:** 10
- **Quality Management:** ISO 9001-2015

DOE design – the 'TEA' domain

DOE design 'beyond TEA' - more precise modelling options

- \supset Higher precision then TEA: solve Maxwell's equations !
- **Various simulation-options for microoptical elements**
	- **RCWA (e.g. Synopsys DiffractMod, Lighttrans** VirtualLab, S4, …
	- **→ FDTD (e.g. Ansys Lumerical, meep, ...)**
	- FEM (e.g. JCMWave JCMsuite, [FreeFEM++], …)

<https://web.stanford.edu/group/fan/S4/>

- \supset Shared topics and issues for all mentioned methods
	- 1. VERY long computation times compared to TEA
	- 2. Algorithm(s) needed to do not only simulations, but optimizations **Disclaimer: No recommendation for any software,*

in particular not one of the commercial packages. Mentioned software packages are examples only

Adjoint method in photonics – 'inverse design'

- **→ Making use of reciprocity of** electromagnetic theory
- \supset One forward and one , adjoint \sum simulation, e.g. 2 x RCWA
- **The From these two computations, a** gradient ∂(FOM)/∂P can be computed
- **→ Gradient search methods applicable ⇒ FOM flexibility !**
- **■** Noticable similarity with IFTA with 'variable strength projections'

Optimization is possible for rigorous domain !

[1] C.M.Lalau-Keraly, S.Bhargava, O.D.Miller, E.Yablonovitch, 'Adjoint shape optimization applied to electromagnetic design', Opt. Express 21(18), pp 21693-21701 (2013)

[2] D.C.Kim, A.Hermerschmidt, P.Dyachenko, T.Scharf, 'Inverse design and demonstration of high-performance wide-angle diffractive optical elements', Opt. Express 28(15), p. 22321-22333 (2020)

[3] S. Bühling, F. Wyrowski, 'Improved transmission design algorithms by utilizing variable-strength projections', JOMO , Vol. 49(11), pp. 1871-1892 (2002)

Shape changes during optimization – local plots

Main changes during optimization for SNR or RMS: at lateral boundaries

- Precise fabrication of lateral shapes required !
- Next level of optmizations: predict proximity effects in fabrication and take them into account

Pioneers in Photonic Technology HOLOEYE Pioneers in Photonic Technology

Approximate methods for larger unit cell sizes

• Computation time can still be too large

Solutions

- a. Use more computational power
- b. Use approximations better than TEA faster than rigorous methods

For the second option (b.)

Pioneers in Photonic Technology TORIGETS IN PROTONIC TECHNOLO

- Promising candidate is e.g '(Vectorial) wave propagation method' WPM (Brenner1993, Fertig 2010)
- \bullet Prediction of step pertubation effects is possible
	- **Considerable contribution to deviation from TEA model**
	- **■** Effects of mode-coupling not simulated, small(er) contribution for large unit cell, not too small' critical dimension
- **◯ Gradient methods based on approximate methods in use @Holoeye with** very good results
- \bigcirc Of course: whenever possible, verification by rigorous simulation (e.g. RCWA) prior to fabrication

UC of binary DOE 18µm ×18µm, λ=532nm, PMMA Upper image: phase Lower image: amplitude computed by WPM

Challenges 'beyond the design'

Fabrication

 \supset Match the lateral shape

Match the depth (typically 1-2% is good enough)

Eye safety issues arise in laser + DOE applications if shape and depth precision targets are not met.

Measurement

- Choose how to set up the testing equipment
	- **P** Flexible measurement, e.g. based on (calibrated) power sensor(s) during development iteration(s)
	- **Transfer to spectrometer-based or camera**based measurement set-ups for volume production

A-laser exit aperture, B- wafer stage, C- moveable sensor

Summary and conclusion

- \supset TEA' design methods often not suitable
- \supset Rigorous methods can be used in optimizations based on the adjoint method
	- Fan-out gratings and full-pattern angle (FPA) >100° and <10% uniformity error
- \Rightarrow Approximate methods for larger unit cell sizes
	- \supset Unit cell sizes of a few 100µm and FPA 20° .. 40° and uniformity errors ≤5%
- \supset Optimization options to suppress too small features
- \supset Binary and multi-level DOE designs

