

Optimizing Semiconductor Equipment to Address Optical Device Manufacturing Challenges

September 18, 2024

Julie Bannister¹, Tak Higuchi², Angelique Raley³, April Shuyan¹ ¹Tokyo Electron America, Inc, ²Tokyo Electron Limited ³TEL Technology Center, America, LLC

Contents

- Optical Device Growth
- Optical Device Process Challenges
 - AR/VR Waveguides
 - Photonics waveguides
 - Micro LED
 - Metalens
- Manufacturing Challenges

TEL Tool Solutions

Optical Device Applications Growth

AR/VR Next human-data interface

Expanding applications driving growth and increasing manufacturing capacity requirements

J. Bannister / Tokyo Electron America, Corporate Marketing / September 18, 2024 / EPIC Technology Meeting

3

TEL "MAGIC" to Address More-than-Moore

Optical Wavelength and Photonics on Wafer Opportunities

Optical Architectures of AR Waveguides

Typical AR Optical Architecture

Grating Formation Methods

Materials & Patterning

6

Design Tradeoffs of Waveguides for AR Glasses

Ideal Product

Lightweight, stylish, lower cost, long battery life

Challenges

- Film quality high RI with no crystallization
 Precursor chemistry
- Waveguide profile control uniform profiles and depths
 - Slant
 - Binary/multi-depth gratings

Scalable deposition and etching of high-RI materials will open pathways for AR waveguide manufacturing

Key Process Technologies for Photonics Waveguide Formation

Challenges

- Quality conformal coating & passivation
 ALD, LPCVD, PECVD
- Waveguide profile control
 - Uniformity and surface roughness
- Low damage etching
- Precise surface trimming and smoothing
 - ALE, wet cleaning
- Target LER <1nm</p>

High quality deposition and atomic scale etching required to meets photonic waveguide requirements

Key Challenges in µLEDs

Typical µLED structures

Front-side coating / lens (improve directivity)

Challenges

- Mitigation of side-wall damage
 - Dry etching of III-V materials
 - Wet cleaning
 - Removal of damaged layers
 - ALD / CVD for passivation (such as SiN)
- Optical-quality thin-film formation
 - Conformal formation of multi-layer reflectors
 - Spin-on films for gap fill and other purposes
- Bonding / Test & Repair
 - Die (from 6 or 8 inch) to Wafer (12 inch)

Micro LED high brightness, contrast and efficiency make it an ideal candidate as micro projectors in AR-glass architecture once technology matures

Metalens Process Challenges

Challenges

- Uniform high-index film deposition
- High aspect ratio pillars profile control
- High density to low density features loading effects
- Large size metalens (mm or cm scale):
 - High data density (nm structures on a 4-inch/8inch/12-inch wafer) – see table below
 - Photomask fabrication
 - Uniform etch across
 - Fabrication on a non-Si substrate, e.g. SiO₂, sapphire, soft material

	De r	esign file size increases rapidly with netalens size	Special compression algorithms needed
Device diameter	Meta-element count	Uncompressed file size (B = Byte)	METAC file size
10 µm	150	19.8 kB	9.1 kB
50 µm	3,614	157.9 kB	44.5 kB
100 µm	14,068	501.4 kB	94.1 kB
500 µm	1,053,822	30.3 MB	972.1 kB
1 mm	3,204,089	91.2 MB	1.9 MB
5 mm	73,194,422	2.2 GB	11.0 MB
10 mm	291,697,949	8.8 GB	23.3 MB
50 mm	6,853,721,364	205.7 GB	131.1 MB

Source: Optics EXPRESS, Vol 26, 2, Pp.1573-1585

Manufacturing Challenges and TEL Tool Solutions

Optical Device Manufacturing Challenges

Solutions Offered

- Glass wafer handling/processing capability
 - Thickness, weight, conductivity
- Scalability from ≤200mm to 300mm capable
- Utilize existing HW design to lower cost

Key Enablers for High Volume Manufacturing

Deposition

Diffusion / ALD / LPVCD / PECVD TELINDY PLUSTM / NT333TM ALPHA-8SETM i / MZETATM

- High quality, defect free films
 - Si photonics waveguides: Si, SiN
 - AR/VR waveguides: TiOx
- Excellent film uniformity
- High throughput
- Extend HVM proven hardware

Dielectric and Conductor Etching Tactras[™]/ UNITY[™] Me

- Atomic layer precision etch
 - Si photonics waveguides: Si, SiN
 - AR/VR waveguides: TiOx
 - MicroLED: low damage MQW mesa stack etch, vertical sidewall
- Extend HVM proven hardware

- Applications for optical devices continue to expand, driving need to solve manufacturing challenges
- Growth and adoption will complement leading edge technologies like AI
- HVM requires robust capability for 200 and 300mm
- TEL is leveraging experience and BKMs from CMOS based devices to enable solutions beyond Silicon
- TEL provides scalability with proven HVM reliability to address MAGIC device requirements
- Collaboration is key to accelerate manufacturing readiness

Notice

You may not copy or disclose to any third party without prior written consent with TEL.

Tokyo Electron

TEL and "TEL" are trademarks of Tokyo Electron Limited.

