

Laser beam shaping for material micro-processing Dr Persephone Poulton EPIC, Vilnius 2024

Refractive monolithic beamshapers for lasers

PowerPhotonic

- Efficient
- Compact
- Passive
- Lightweight
- SM and MM options

PowerPhotonic optics are also

- Freeform
- High transmission efficiency
- Designed for easy addition to existing assemblies

Optic placement options

Our freeform optics manufacturing process

PowerPhotonic

Why do we need beam shaping?

- Efficiency is everything
- Photon conservation
 - Right number
 - Right place
 - Right time

Application 1: surface patterning with LIPSS

PowerPhotonic

We partnered with Fluence to trial a flat top beam shaper for LIPSS (laser induced periodic surface structures)

Enhancing Beam Performance

Application 1: LIPSS – with beam shaping

PowerPhotonic

Parameters

- Beam shapes designed to attain > 0.2 J/cm² with 100 μJ pulses
- λ: 1030nm
- M²: 1.1
- 90 μJ @ 200kHz
- 250fs
- P_{avg}: 18W

Line and rectangular shape variants are also available

Application 1: LIPSS - Generation

LIPSS over a 40 x 40 mm area

Enhancing Beam Performance

Application 1: LIPSS - Generation

PowerPhotonic

- Square flat top beam shape
- LIPSS generated at a rate of 6.8 cm²/s at 18 W
- Efficiency of 0.38 cm².s⁻¹.W⁻¹ -> A4 sheet in < 1 minute at 30 W</p>
- Optimised spot shape & low-loss shaping enables fast & efficient processing
- Shaper helps to utilize full available laser power at a reduced pulse repetition rate (reduced heat accumulation)
- Rectangular or line shapes enables a reduction of scanning speed at high repetition rates.

Enhancing Beam Performance

Application 2: Black marking of stainless steel

PowerPhotonic

	Processing speed (cm ² /min)
Unshaped Gaussian spot	2.4
Flat top square	22.4
A square/rectangular beam shape is an ideal choice for right-angled corner marking	

Enhancing Beam Performance

Application 3: (macro) welding of Aluminium 6082

PowerPhotonic

- Collaborating with WMG, we trialled ring and core beam shapers and tail shapers in comparison to the same setup with no beam shaping (MM system)
- Tensile stress improved in all 4 shaped beam trials
- Spatter was reduced
- Fewer cracks, particularly using a tail shaped beam

Enhancing Beam Performance

Application 3: Welding of Aluminium 6082

PowerPhotonic

Application 3: Welding of Aluminium 6082

PowerPhotonic

- Macro welding results with static beam shapes:
 - Core and ring
 - Ring
 - Tail shapes

We have similar beam shapers for micro-welding applications

Collaborative trials are welcomed

(Continuously) variable beam shapers

PowerPhotonic

Gauss (unshaped) -> varying ring: core intensity

Gauss (unshaped) -> top hat -> ring

Useful links

- https://www.powerphotonic.com/
- https://www.powerphotonic.com/products/lightforge/
- https://www.powerphotonic.com/powerphotonic-tailshaper/

For more details please contact: sales@powerphotonic.com

We are always happy to hear from you!

Thank you for your attention

