

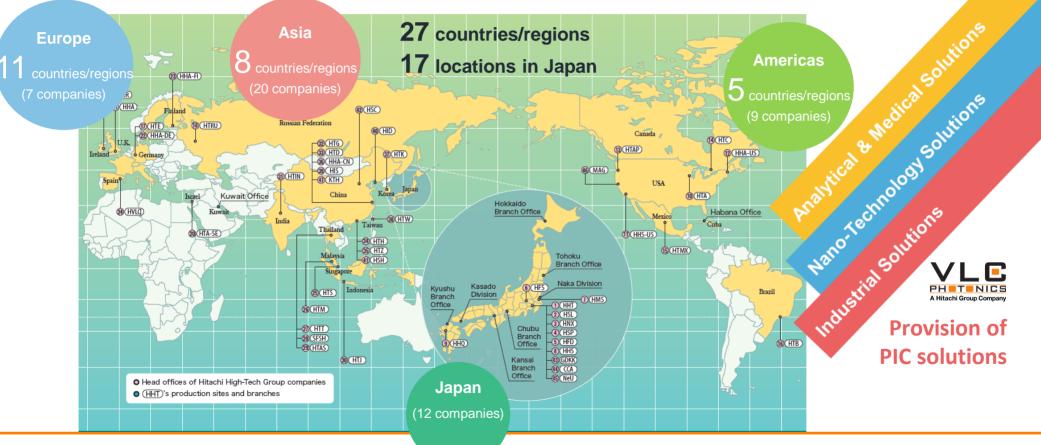
5th June 2023

EPIC Technology Meeting: Photonic Integration and Packaging at Fraunhofer IZM

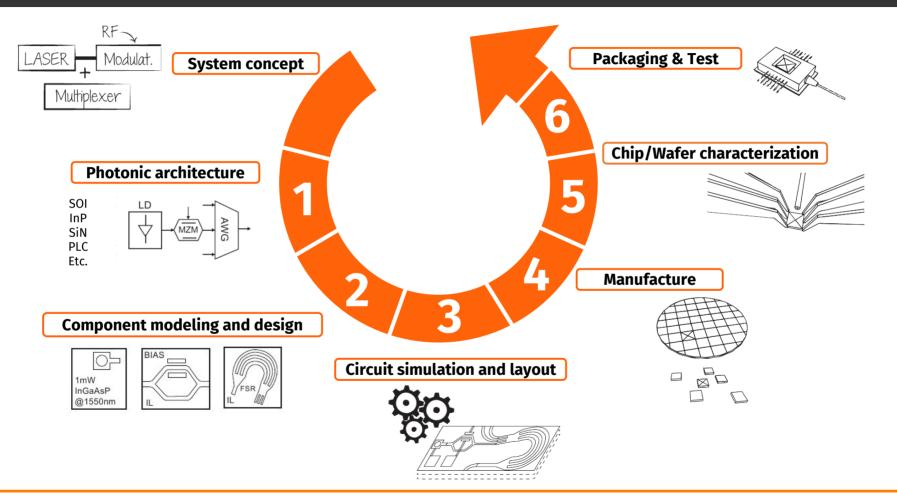
Scaling up the photonic testing back-end

About us

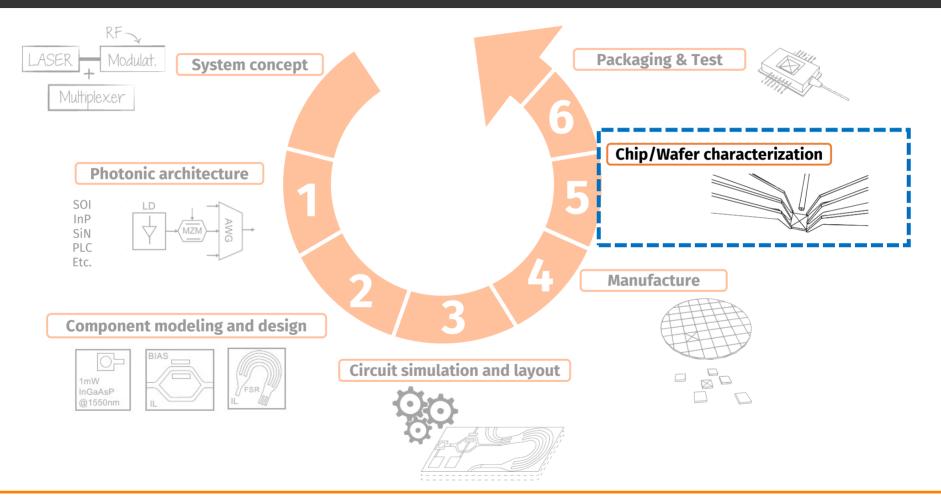
- VLC Photonics offers Photonic Integrated Circuit (PIC) engineering services, focused on design and testing.
- **C** Company founded in 2011.
- **C** Offices and clean-room labs in Valencia Technological Campus (Spain).
- **E** 28 members of extensive academic and industrial experience, and keep hiring.
- Part of Hitachi High-Tech group since 2020.



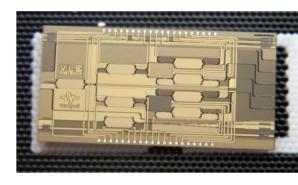
About us (II)



OHITACHI High-Tech Corporation


PIC development cycle

PIC development cycle



Characterization and test needs

- It is still critical to do extensive component / circuit characterization when validating PIC designs in engineering.
 - To validate fabrication process and its tolerances through sensitivity analysis (specially needed in photonics).
 - To confirm the intended layout functionality, and feedback the designs for statistical modelling.
 - To sort out known good dies (KGD) and provide feedback on foundry yield, for accelerating ramp up.
- When moving to PIC volume production, scalability becomes an issue:
 - Functional circuit testing is still required beyond fab metrology and PCM.
 - Need fast and low cost Wafer/KGD sorting/binning before packaging.
 - Significant CAPEX for parallelization, engineering and setup time required.

Characterization & Testing facilities

VLE 1172

Two clean room labs (ISO class 6 and 8) with:

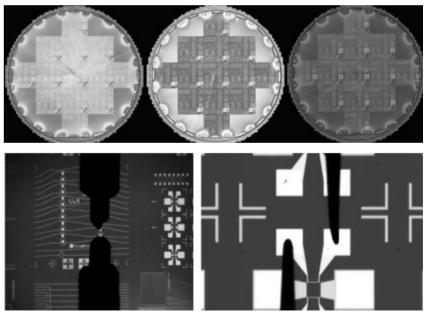
- C Optical microscopes & SEM for detailed visual inspection
- **C** Optical (vertical and edge light coupling) and electrical probing:
 - **E** 5 semi-automated bare die characterization setups
 - **E** 1 manual electrical wafer tester
 - **E** 2 fully automated opto-electronic wafer testers
- E Electrical measurement instrumentation for DC and RF signal testing up to 110 GHz and optical equipment to work from visible (400 nm) to mid-IR (up to 5 μm).
- **E** Test assembly:
 - **I** manual & 1 automated wire-bonder
 - **E** 1 flip-chip tool

Automatic Testing at VLC Photonics I

DEVICES

Our Wafer Level Testers are adapted to work with:

- Wafers, up to 12 inches.
- Bars, up to 12 inches.
- Diced chips (from 1mm x 1mm above).


E ELECTRICAL PROBING

We have capabilities to do electrical testing from all 4 sides of the chip.

- DC Probing
 - Single needle.
 - MCM (Multi Contact Needles). Std. pitch: 100um, 150um and 250um.
- RF Probing
 - GSG. Std. pitch: 60um.
 - Up to 110GHz measurements.

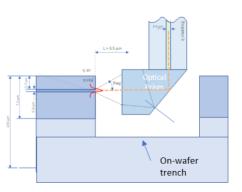
SOUTH

Automatic Testing at VLC Photonics II

OPTICAL PROBING

We have capabilities to do optical testing from **West** and **East** sides of the chip. North and South stages just can be used for electrical probing.

E Vertical coupling (All types of devices)


- Cleaved fibers
- Fiber Arrays (FA)
- Leadless Fiber (Leadless FA)
- With or without Anti Reflection Coating (ARC)
- With automatic polarization control.

E Edge coupling (Bars and Diced chips)


- Cleaved fibers & Lensed Fibers
- Fiber Arrays (FA)
- Fiber Arrays with lensed fibers (Lensed FA)
- With or without Anti Reflection Coating (ARC)
- With automatic polarization control.

E Extra: Edge coupling with periscopes

• For non-diced wafers with trenches.

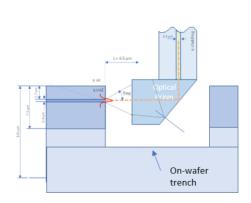
Automatic Testing at VLC Photonics II

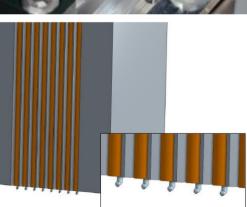
• OPTICAL PROBING

We have capabilities to do optical testing from **West** and **East** sides of the chip.

E Vertical coupling (All types of devices)

- Cleaved fibers
- Fiber Arrays (FA)
- Leadless Fiber (Leadless FA)
- With or without Anti Reflection Coating (ARC)
- With automatic polarization control.


E Edge coupling


- Cleaved fibers & Lensed Fibers
- Fiber Arrays (FA)
- Fiber Arrays with lensed fibers (Lensed FA)
- With automatic polarization control.

E Extra: Edge coupling with periscopes

• For non-diced wafers with trenches.

- We are open to evaluate all kinds of projects.
- We did even adapted our WLTs to use **integrated lasers** as optical probes.

U

•

Parameter

T: Optical ports pitch

U: Optical ports clearance area

W: Vertical safety distance

V: Optical ports vertical coupling angle

• Assembly Design Kits (ADKs)

W

7° to 13°

30 um

Minimum requirement

1250 µm (for standard FA)

127µm / 250 µm

Testing layout guidelines.

Available for some foundries and EDA software frameworks. Compatible with test and packaging requirements.

Recommended

127um / 250 um

We gathered all the specs to be required by the chip design

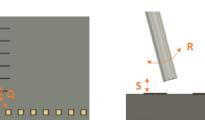
to be		
	Testing Layout Guidelin	es
•		
	C	2
	CONFIDENTIAL 1	\sim
		PDF

Recommended

127μm / 250 μm

250 µm

10°


Minimum requirement

50 um

127µm7250µm	F. Optical ports pitci	11	50 µm	1
1500 μm	Q: Optical ports clea	irance area	50 μm	
10°	R: Optical ports vert	ical coupling angle	7° to 13°	
	S: Vertical safety dis	tance	30 um	

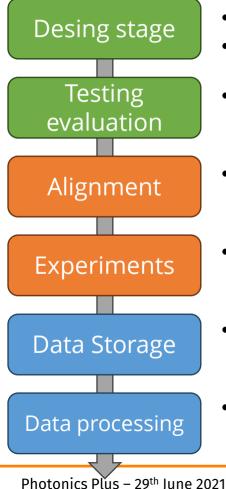
Parameter

D: Optical ports pitch

Examples of previous projects:

DUT	Structures	Measurements
Six 6" wafers, >300 dies	>5k	~50k
Two 8" wafers, >1800 dies	>14.5k	~58k
>50 dies	>140	>31k

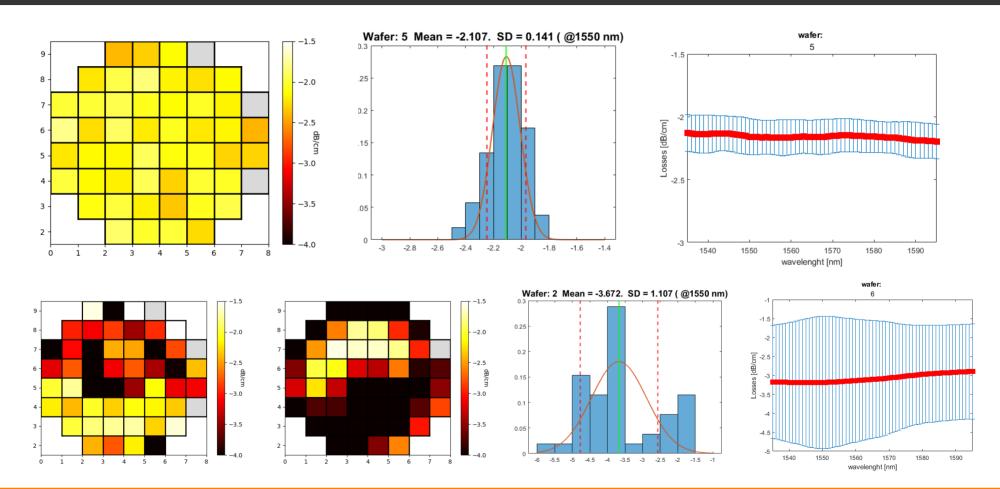
Example times


Probing time:	4 s
Measurement time:	1 s
# measurements:	50k

TOTAL TIME = ~3 days

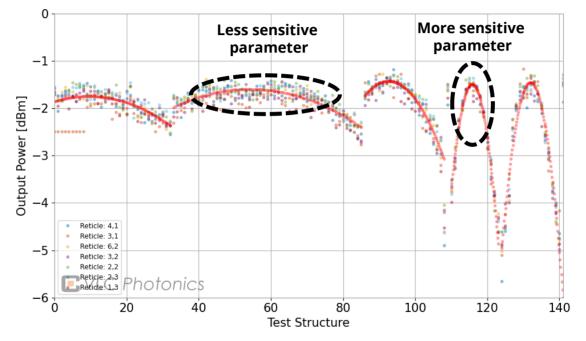
- Fast probing and trace acquisition times are essential when scaling up.
- Smart characterization plan and execution is a must for insightful but time-practical test campaign.
- We developed a tool to estimate the testing times considering the different types of probing we offer and the different experiments we have in our portfolio.

VLC Testing environment



- Different software's are used.
- We automatically extract ports names and their coordinates.
- We create **tables** with the structures to test, their ports and the experiments to run in each probing position.
- Coordinates are imported into **Ficontec PCM** software and probes moved to position.
- Once in position we run the selected experiments using our python libraries to control the instruments.
- Data gathered is both saved in the VLC's database and as CSV files.
- Finally, we used python to gather the data back from the database and **auto-process** the results.

Process control and yield analysis



Component sensitivity analysis

Example of design parameters sweep over 140 test structures in 7 reticles

- Repeatability of bare die measurements with manual alignment is poor (>0.5 dB).
- WLT ensures that alignment and trace acquisition are done automatically with minimal variations (mechanical, thermal etc.)

RF testing key for next-gen datacom PICs

- Lightwave Component Analysers (LCA's) for parametric testing of devices like high speed modulators in transceivers.
 - Up to 110 GHz turn-key test system for optical RX and TX
 - Suitable for die and wafer level testing
 - Return to zero and nonreturn-to-zero (RZ / NRZ) and pulse amplitude modulation (PAM) formats
 - S-parameter testing over the full 1260 nm to 1620 nm range

Thank you for your attention!

Contact details

info@vlcphotonics.com

www.vlcphotonics.com

Y

@vlcphotonics

linkedin.com/company/vlc-photonics

(in)

Were