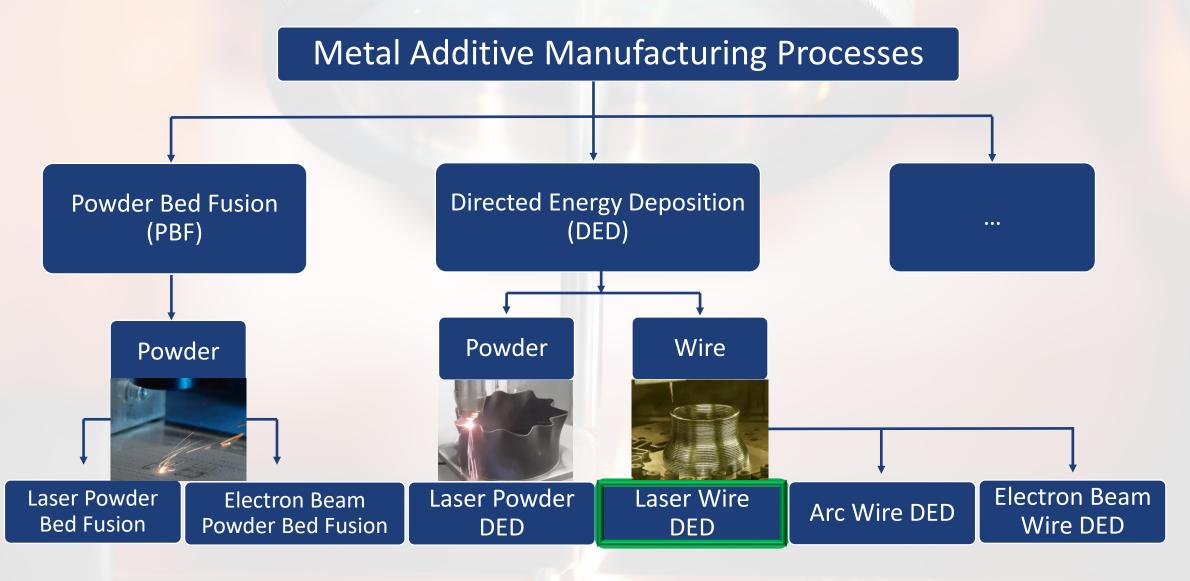


LASER-BASED ADDITIVE MANUFACTURING AND 3D PRINTING WITH WIRE INNOVATIVE SYSTEM TECHNOLOGY MAKES IT SIMPLE, FLEXIBLE AND CLEAN

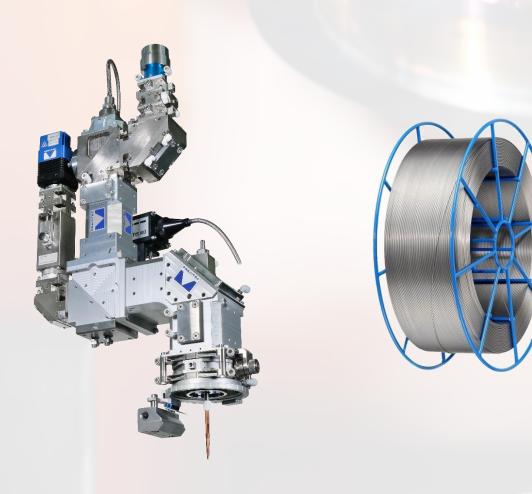
Thorsten Lorenz | 26.09.2024

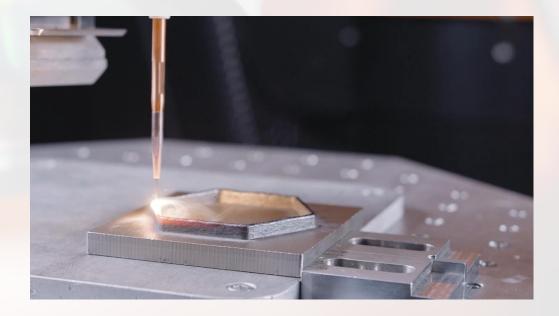
CONTENT


- 1. Laser Wire DED Technology
- 2. Application Examples
- 3. Conclusion

LASER WIRE DED TECHNOLOGY

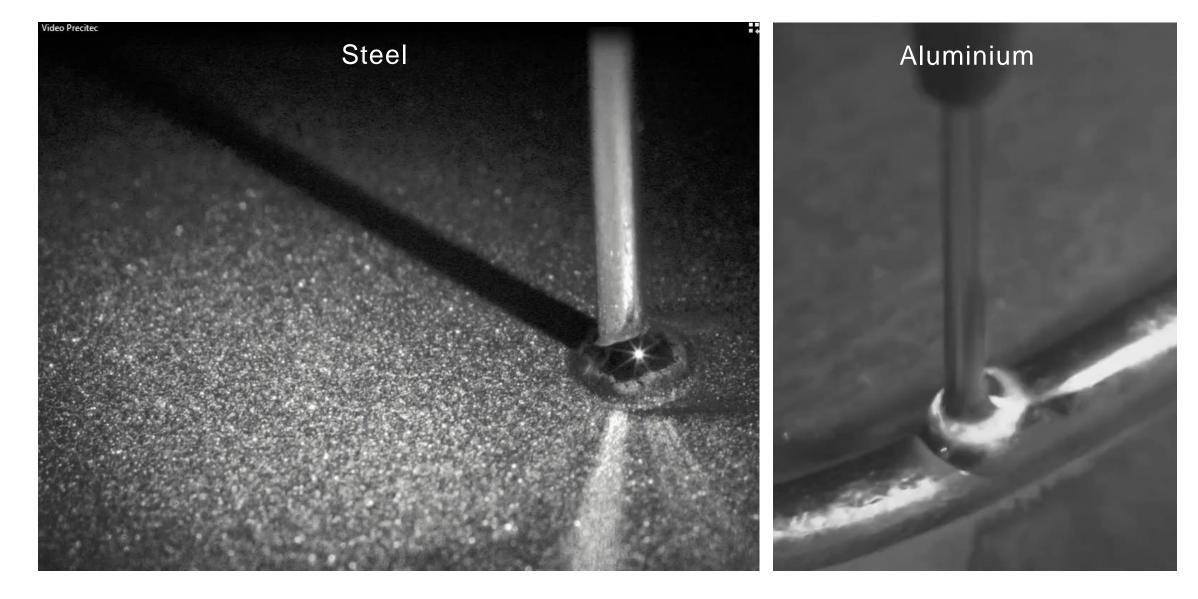
TECHNOLOGY COMPARISON




TECHNOLOGY COMPARISON

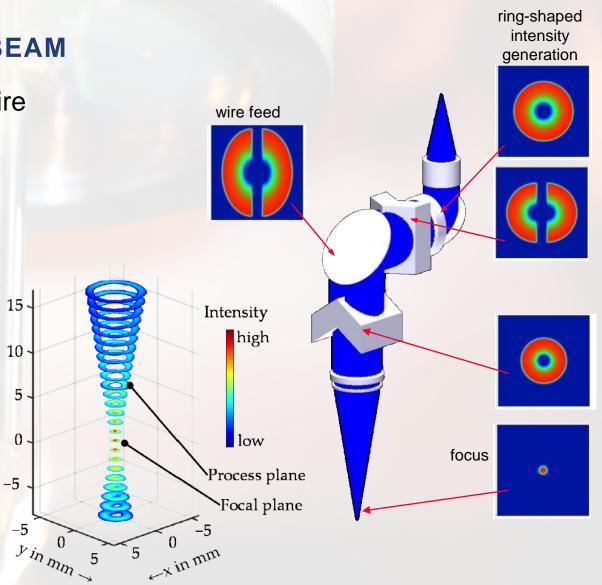
Criteria	Laser DED Wire		Laser DED Powder		PBFM (Powder Bed Fusion)	
Application Variety	ഗ്	3D Printing (on existing 3D parts), repair, cladding	ம்	3D Printing (on existing parts), repair, cladding	Ŗ	3D printing on flat surfaces
Size of work envelope	ഗ്	Standard up to 2x4x1,5m	மீ	Standard up to 2x4x1,5m	Ŗ	
Cost, material handling, complexity	ഗ്	Lowest Cost, No powder handling, easy to use	Ŗ	Machine + equipment for powder handling	Ŗ	Machine + equipment for powder handling
Post processing	ഗ്	Surface finish	ഗ്	Surface finish	₿	De-powdering, support structure removal, surface finish
Hybrid manufacturing	மீ	CNC integration possible	மீ	CNC integration possible	尽	Only on flat surfaces
Build rate (e.g. Aluminum)	ഗ്	Up to 3.000 cm³/h (8kg/hr)	7	Up to 1.500 cm ³ /h (4kg/hr)	乃	Up to 200 cm ³ /h (0,5kg/hr)
Environmetal pollution	ഗ്	No	Ŗ	Health issues / Some materials may be toxic	Ŗ	Health issues, can reach lungs / Some materials highly toxic
Hazard of explosion	மீ	No	Ş	Medium	Ŗ	High
Minimal wall thickness / Accuracy	7	1,0 mm	Ŗ	0,8 mm	ഗ്	0,3 mm / Small laser spot and support structure
Quality Control	ഗ്	Wire speed, wire contact, LWM, OCT, pyrometer	7	Powder stream control not possible, LWM, OCT	Ŗ	Powder stream control not possible
Material efficiency	ഗ്	100%	¢3	90%	Ŗ	Re-cycle and mixing depending on particle size
Material availability	மீ	Global Standard	Ş	No global standard	Ŗ	No global standard

COAXPRINTER – A NEW APPROACH FOR AM


INTRODUCTION

- Advantages of wire vs powder:
 - 100% material efficiency
 - low feed stock material costs
 - hazard-free material and process handling

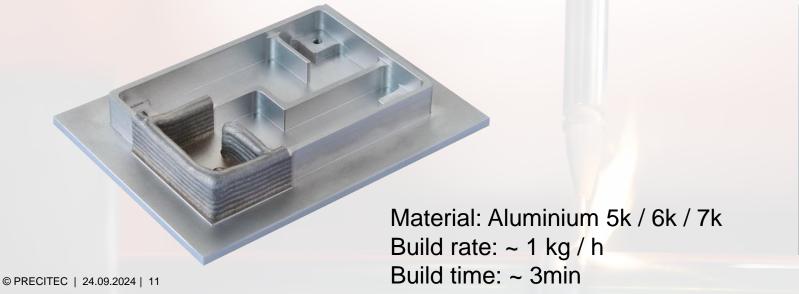
DIRECT ENERGY DEPOSITION



LASER DED-WIRE – A DEEPER LOOK INTO THE BEAM PATH

COAXPRINTER UNIQUE RING- SHAPED BEAM

- direction-independent laser 3D printing with wire
- unique ring-shaped beam
- coaxial feeding of the wire
- 100% material efficiency and high energy absorption by the wire allows high built rate
- ring beam caustic enables a large process window and variation of working distance
- controlled preheating of the wire
- better accessibility due to narrow beam cone



APPLICATION EXAMPLES

MICRO APPLICATIONS

- Creation of 3D structures on existing parts (hybrid manufacturing)
- Minimum wall thickness due to wire diameter
- Reduced milling operations
- Improved CO2 footprint due to less waste material
- Expierence in aluminium, titanium and stainless steel

HOUSINGS FOR ELECTRONIC COMPONENTS

AEROSPACE - TITANIUM

AEROSPACE FLANGE

LESS MACHINING due to new design possibilities

OPTIMIZED CO2 FOOTPRINT based on reduction of wasted material, e.g. during milling process

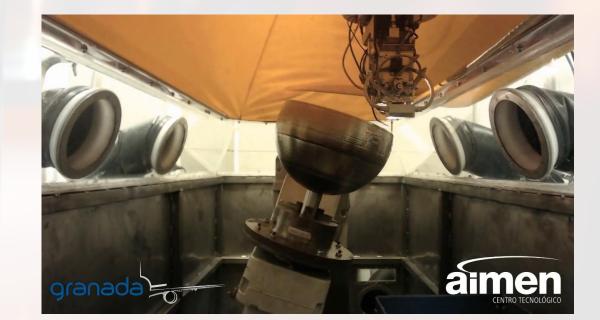
DED printed

Heat treated and partially machined

70% SCRAP REDUCTION

- DED, heat treatment and partially machining
- Reduce scrap volume by over 70% through near net shape printing

Scrap volume traditional machining vs. DED with partial machining


AEROSPACE - TITANIUM

TITANIUM TANK FOR SPACE LAUNCHERS

Korea Space Launch Vehicle- II

- Material Ti6Al4V
- Total layers: 500
- Build length: 430m
- Total weight: 3.6 kg

AEROSPACE - TITANIUM

M PRECITEC

Wire material: TA6V Wire diameter: 1mm

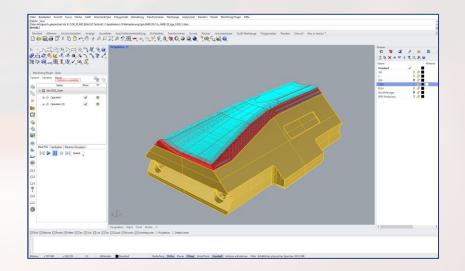
MPRECITEC

© PRECITEC | 24.09.2024 | 14

FORGING HAMMER - NI BASED ALLOY

ELIMINATION OF TOOLING COSTS

build exactly the geometry you need without additional tool


HIGH DIMENSIONAL ACCURACY

- high resolution due to small laser spot
- reduced heat input
- minimum distortion of the parts

100% MATERIAL EFFICIENCY

- filler material wire
- high deposition rate

USE CASE FORGING HAMMER

- hammer manufacturing and repair with laser wire DED
- 20 kg of Ni-based alloy deposited at 3 kg / h
- reproducibility ~ 0,3 mm
- no further machining required

BEARINGS - BRONZE

IREPALASER

- Wire material: CuAl8
- Wire diameter: 1,6 mm

CHEMICAL PLANTS - STAINLESS STEEL 316L

- Wire diameter : 1mm
- Wire feed rate : 2 m/min
- Deposition rate : 0.75 kg/h
- Processing time : 3 hours 30 min
- Printing time : 2 hours 50 min

CHEMICAL PLANTS - STAINLESS STEEL 316L

ENERGY - STAINLESS STEEL 316L

- Wire diameter: 1mm
- Deposition rate: 470 g/h (60 cm³/h)
- Processing time: 5h
- Weight of deposition: 2350g

CONCLUSION

10

CONCLUSION

RELIABLE PARTNER

proven in numerous projects

UNIQUE PRODUCT COAXPRINTER

enables previously impossible applications

THE RIGHT SIZE OF A COMPANY

to scale production and on-site support (OSS) in short notice

R&D CAPACITY

in Germany and China ensure further development and technology leadership

INTERNATIONAL SUPPORT

available in US, China, India and Europe

DECADES OF EXPERIENCE

working with additive manufacturing

EXARGE INTERNATIONAL NETWORK

with R&D and material scientists and suppliers for additive manufacturing

MPRECITEC

Thorsten Lorenz| <u>t.lorenz@precitec.de</u> | +49 151 1740 4298