Advanced FBGs for sensin and dispersion control

Gunnar Hedin, Proximion AB

Who are Proximion?

- Part of Hexatronic Group, consisting of 54 companies and 1700 employees world-wide
- World leading manufacturer of long FBG for telecom and sensing, founded 1999.
- Factory and research center located in Kista outside of Stockholm, Sweden
- Large 1500 sqm clean-room with 14 grating writing machines
- 100 000+ FBG-products for dispersion control deployed in existing telecom networks
- 100+ industrial sensor system installations for temperature and strain-measurement operating world-wide

We specialize in customized gratings and full integration of FBG systems

What's special about Proximion's FBGs?

- Unique SW controlled manufacturing process no masks required!
- Maximal length of 40m continuous FBG
- Continuously chirped grating
 - Tailored dispersion from 1ps/nm up to 50 000ps/nm
 - Wavelength range ~1000nm up to 2000nm
- Filter gratings
 - Arbritrary apodisation profiles i.e.for steep-edge filters
 - Absolute frequency accuracy
 - Reflectance range from ~0.1% to 100% (T>100dB)
- FBG arrays
 - Up to ~1000 FBGs on a single fiber
 - Flexible spacing and apodisation for high SMSR
 - Long-term stable sensors for ~10K to 650C operation

FBG usage today

- Dispersion compensation
 - Continuous chirped FBGs
 - Channelized chirped FBGs
 - Dispersion emulators for coherent training

Sensing

- Discrete FBG arrays for temperature and strain
- Single FBG for accelation, pressure etc
- Continuous FBGs for shape sensing

• Fiberlaser

- High and low reflectance mirrors
- Optical filters

oximion

- Pulse stretching/compression

Rational for using chirped FBGs as temperature sensor?

Chirped FBGs gives maximal spatial resolution without peak interference

roximion

λ

Spectral response of a chirped FBGS sensor

• Either phase or amplitude measurement possible

Example A: Strain sensing of a composite beam

Phase measuement

• OFDR (Luna)

Amplitude measurement

• Wistsense (Proximion)

Example B: Hot spot detection

Temperature sensor 9.5 m

- Tested grating is 9.5m long
- Detected hot-spot size ~4mm
- Position accuracy ~1mm
- \Rightarrow 2500 spatial sensor points
- \Rightarrow 1 mm spatial resolution

Advantages using chirped FBG as strain sensor

Comparison discrete vs continuous FBG

Discrete FBG array

- + Standard method
- + Peak detection algorithm
- Limited number of peaks
- High spatial resolution takes a lot of bandwidth
- Long sensors have dead spots

Continuous chirped FBGs

- Non-standard method
- Full spectrum analysis required
- + Infinite number of peaks
- + Maximal possible spatial resolution
- + No dead spots on the sensor

Continuously chirped sensors are great for some, but not all application!

Traditional (non-telecom) applications for chirped FBGs

No standard products – FBG needs to be tailormade for each system system

Book Proximion

Q & A

- Are you currently using any FBGs today?
- What kind

