

## "Fiber optic sensing concepts for Minimally Invasive Surgery (MIS)"

June 12, 2024

Dr. Christian Voigtländer

R&D Manager FBGS





- About FBGS
- Minimally Invasive Surgery (MIS)
- Catheter navigation
  - 3D Shape Sensing of catheters
  - Navigation using pre-operative CT-imaging data
  - Absolute shape tracking using augmented reality



## About FBGS

- Minimally Invasive Surgery (MIS)
- Catheter navigation
  - 3D Shape Sensing of catheters
  - Navigation using pre-operative CT-imaging data
  - Absolute shape tracking using augmented reality



#### we are

a developer and manufacturer of fiber optic sensor components and fiber optic sensor solutions

We are vertical from raw materials to software







for Medical



Process Industry

1000

Civil engineering



Transportation

Energy

N

Expert in tailored fiber optic sensors and interrogation devices

High level of applications know-how Customer oriented

#### we speak

18 languages and our team originates from 20 countries





## Locations

FBGS North America (Montreal) Sales (North American market)

FBGS

FBGS Belgium (Geel) Sales and applications Development and assembly of measurement systems (interrogators) Sensing Solution Engineering and R&D Work



## FBGS Germany (Jena)

X

Company Headquarter DTG<sup>®</sup> and FSG<sup>®</sup> production R&D location for specialty fibers and FBGs



#### FBGS China (Suzhou) Sales and applications (Chinese customers)



## Fiber Bragg Gratings

Permanent periodic modulation of the refractive index in the fiber core:







## **FBGS** base technologies

### Draw Tower Grating® technology



FBGS

FemtoSecond Grating® technology





#### FBGscan interrogator platform



#### **Features**

- Stand-alone FBG measurement system
- Up to 40 sensors per optical channel
- No need for time of flight corrections to maintain wavelength accuracy
- Depolarized light source to reduce birefringence induced noise effects
- High dynamic range ≥ 30dB
- Simultaneously detection of sensors belonging to the same optical channel
- Built-in processing board for calculating engineered data

## **FBGS** product line and technologies



### Key advantages fiber optic sensors



#### RELIABILITY

- Passive component
- Long lifetime (>20 years)
- No corrosion
- Stable over time (No calibration required)
- Cables and connectors are telecom grade

FBGS



**IMMUNITY** 

Immune to electro-

magnetic radiation

& radio frequency

interference

•

Immune to high

Explosion safe

voltage discharge



#### SIZE

- Fiber is also the sensor
- Lightweight & small diameter (< 1/4 mm)
- High integration and embedding capabilities



#### PERFORMANCE

- 10's, 100's or 1000's of sensors in 1 fiber
- Less cables
- Easy installation
- High fatigue resistance
- Long distance measurements (20+ km)



#### OMNI-FUNCTIONALITY

- Measurement of
  - Strain
  - Temperature
  - Vibration
  - Acoustics
  - Pressure
  - Force
  - Shape
  - Acceleration
  - Displacement
  - Flow
  - Liquid level

- About FBGS
- Minimally Invasive Surgery (MIS)
- Catheter navigation
  - 3D Shape Sensing of catheters
  - Navigation using pre-operative CT-imaging data
  - Absolute shape tracking using augmented reality



## Minimally Invasive Surgery (MIS)

Minimally invasive surgery refers to **surgical procedures performed with minimal damage to the body's tissues**. These procedures are designed to <u>minimize the size and number of incisions</u>, reduce trauma to surrounding tissues, and promote faster recovery and reduced postoperative pain for patients

#### **Example: Atrial Fibrillation (AFib)**

- Replacement of regular heart rhythm with an irregular fibrillatory heart rhythm
- Possible treatment:
  - > Catheter ablation (interventional procedure)
- Regions responsible for the irregularly generated electrical impulses are ablated to electrically insulate them



Courtesy of the MAYO foundation for medical research and the U.S. National Library of Medicine





## Current challenges, limitations and opportunities

#### 1 Patients

- Overall instrument interaction
  - Vessel walls
  - Soft tissue
- Ablation tip contact forces
  - Perforation
  - Esophageal injury

#### **(2)** Interventionalists

- Ionizing radiation (fluoroscopy)
  - Cancer
  - Orthopedic injuries
- Limited visualization
  - 2D grey-scaled images

#### **③** Overall procedure

- Safety and precision
- Sensing & visualization

#### **Opportunities of FO sensing in MIS**

- Provide 3D shape information of catheter(s)
- Assist with localisation/navigation of catheter inside body\_
- Reduce exposure to ionizing radiation
- Measure intended or non-intended interaction forces between catheter and body



- About FBGS
- Minimally Invasive Surgery (MIS)
- Catheter navigation
  - 3D Shape Sensing of catheters
  - Navigation using pre-operative CT-imaging data
  - Absolute shape tracking using augmented reality



# Shape sensing using MCF-DTG®



**Reference:** Al-Ahmad, O., Ourak, M., Van Roosbroeck, J., Vlekken, J., Vander Poorten, E. (2020). Improved FBG-Based Shape Sensing Methods for Vascular Catheterization Treatment. IEEE Robotics and Automation Letters, 5 (3), 4687-4694. doi: 10.1109/LRA.2020.3003291





#### **Endoscope** navigation

- Navigation of endoscope in the body
- Avoidance of endoscope looping
- Insertion length measurement
- Tip torture detection





https://www.leading-medicine-guide.com/de/diagnostik/koloskopie-darmspiegelung



- About FBGS
- Minimally Invasive Surgery (MIS)
- Catheter navigation
  - 3D Shape Sensing of catheters
  - Navigation using pre-operative CT-imaging data
  - Absolute shape tracking using augmented reality



## Navigation using pre-operative CT-imaging data



- **Computed Tomography scan (CT-scan)**, is a medical imaging technique that uses X-ray technology and advanced computer processing to create detailed 3D images of the body, including the bones, muscles, organs and blood vessels
- Segmentation technologies can be used to extract 3D shape information of e.g. blood vessel



Example of Coronary segmentation from CT-scan image (Courtesey: Adriaan Coenen, Medical Center, Rotterdam)

- CT scans are frequently used as part of preparation for surgery or treatment.
- 3D shape information from CT-scan can be used as a <u>reference shape</u> to localize the catheter



## Navigation using pre-operative CT-imaging data



Patent application: Determining position or insertion length of an elongated device (US 18/164,817 and EP20707122.6).



- About FBGS
- Minimally Invasive Surgery (MIS)
- Catheter navigation
  - 3D Shape Sensing of catheters
  - Navigation using pre-operative CT-imaging data
  - Absolute shape tracking using augmented reality



## Absolute shape tracking using augmented reality



- The depth camera allows to perform spatial mapping
  - = the ability to create a **3D map of the environment** and is an inherent part of augmented reality technology.
- Spatial mapping makes it possible to place objects on real surfaces.
- Relative position in 3D space calculated from position markers robe
- Hologram of the shape probe is projected in space matching the physical presence of the shape probe.



## Demonstration absolute shape tracking using augmented reality





## **Questions?**

Dr. Christian Voigtländer (R&D Manager)

- cvoigtlaender@fbgs.com
- www.fbgs.com

- FBGS International NV Bell-Telephonelaan 2H 2440 Geel (Belgium)
- FBGS Technologies GmbH Franz Loewen Str. 3 07745 Jena (Germany)



