

Dielectric Material Processing Using MHz/GHz Bursts

Mantvydas Jašinskas

Chief Sales Officer / m.jasinskas@ekspla.com

2024-09-25

Semiconductor

Consumer

Electronic devices

•

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 01 April 2021 (01.04.2021)

(10) International Publication Number WO 2021/059003 A1

Active Fiber Loop for GHz Burst Formation

Femtosecond laser different operation modes

EKSPLA

Femtosecond laser different operation modes

EKSPLA

Femtosecond laser different operation modes

EKSPLA

Milling $1 \times 1 \text{ mm}^2$ squares in alumina ceramics (Al_2O_3)

Increasing Ablation Rate with GHz Burst Mode – Al₂O₃ ceramics

 / MHz burst reduced ablation rate due to shielding of consequent pulses;

- / GHz burst allowed division of high energy pulse into multiple ones;
- / GHz burst resulted in **1.62 times** increase in throughput, compared to single-pulse.

Operation mode	Ablation rate (mm ³ /min)
Single-pulse	6.39
MHz burst (2 p.)	4.08
GHz burst (92 p.)	10.37

Increasing Ablation Rate with GHz Burst Mode – Al₂O₃ ceramics

- / Increasing number of pulses in burst degrades surface quality;
- / Especially for GHz burst significant thermal accumulation;
- / Post-processing step can be used in single-pulse mode to smoothen the surface.

Milling 2×2 mm² squares in fused-silica glass

Increasing Ablation Rate with GHz Burst Mode

/ Single-pulse, GHz and MHz+GHz burst modes tested;

/ GHz burst resulted in 13.2 times increase in throughput, compared to single-pulse.

Operation mode	Ablation rate (mm ³ /min)
Single-pulse	5.17
GHz burst (70 p.)	68.3
MHz+GHz burst	52.1

Achieve >600 mm³/min removal rate in soda-lime glass

>100 times higher than TDM in single-pulse mode

Top-down Milling (TDM) Technique

/ Top-down Milling is the most used milling technique;

 / Usually suffering from tapering, due to accumulation of ablation debris;

Bottom-up Milling (BUM) Technique

 / Bottom-up Milling processes the material from the bottom side – efficient removal of ablation debris with the help of pressurised air;

 / If the material is transparent – BUM can be used.

Courtesy of FTMC.

Bottom-up Milling (BUM) – Further Increase in Ablation Rate

/ For efficient milling in Bottom-up Milling mode,
Z pitch (slicing) is crucial;

/ Optimisation of Z pitch: scanning of multiple layers with different Z pitch values;

/ MHz+GHz burst (GHz = 24, MHz = 2) resulted in 619.5 mm³/min removal rate in soda-lime glass.
119.8 times higher than TDM in single-pulse mode.

Courtesy of FTMC.

Processing geometries with low-tapers

Bottom-up Milling (BUM) – Low Degree Taper Geometries

/ Low taper holes can be formed in the material since ablation debris do not accumulate in the ablation area;

/ Taper < 1 deg. can be achieved for holes in Ø40-120 μm range.

Courtesy of FTMC.

Bottom-up Milling (BUM) – Nozzle Fabrication

Aspect ratio of 1:32, without the need of chemical etching. Courtesy of FTMC.

Bottom-up Milling (BUM) – Through-Glass Vias Fabrication

Low taper Ø200 µm through holes. Aspect ratio of 1:3 (higher is possible). Courtesy of FTMC.

Low taper Ø60 µm through holes Aspect ratio of 1:12

Drilling of high aspect ratio holes

Long GHz Burst in Fabricating Through Glass Vias

/ GHz bursts initiate self-focusing in the glass volume;

/ Achievable aspect ratio – 1:80;

/ Processing time – 1 hole per 500 ms;

/ Samples cleaned

Courtesy of Akoneer.

Your task is welcomed

In all tasks the same laser was employed FentoLux 30

FemtoLux 30-

EKSPLA

30 W @ 1030 nm High Energy (up to 1 mJ) available Dry cooling

GHz/MHz+GHz burst mode in 515/343 nm

Wide pulse tunability – from fs to ns

Upcoming

How can these features improve your processes?