OPTIMIZING SPECTRAL SYSTEMS: PRACTICAL DESIGNS FOR AGRITECH APPLICATIONS

25.04.2024

TABLE OF CONTENTS

- Introduction to CSEM
- Spectral imaging technologies
- System design considerations
- Case studies
- Future directions

CSEM AT A GLANCE

We are a public-private, non-profit, Swiss technology innovation center.

We enable competitiveness through innovation by developing and transferring world-class technologies to industry.

>100 **MIO TURNOVER**

maintained

DYNAMIC RESEARCH FOR DYNAMIC INDUSTRIES: EVOLVING TO MEET THE NEEDS

SPECTRAL IMAGING

Beyond what is visible through spectral decomposition •

Chemical imaging

5 • Spectral imaging systems

SPECTRAL IMAGING TECHNOLOGIES

Vignette filters

Structured light

FTIR

Push-broom

Illumination

SYSTEM DESIGN: TRADEOFFS

DESIGN CHOICES

- Maximize coverage and sampling
 - Snapshot impossible

- Target specific wavelengths
 - Needs physical modeling
 - SNR issues
- Iterate for best cost/performance ratio
 - Leverage AI for optimal design
 - Adopt alternative designs

8 • Spectral imaging systems

ILLUMINATION VS SENSING

- Hyperspectral illumination:
 - Usually cheaper
 - Subject to light contamination

- Hyperspectral sensing:
 - Can do snapshot imaging
 - More complex

Why not both?

ILLUMINATION VS SENSING

- Hyperspectral illumination:
 - Usually cheaper
 - Subject to light contamination

- Hyperspectral sensing:
 - Can do snapshot imaging
 - More complex

Why not both?

➔ Spectral mixing-unmixing:

 $\begin{aligned} r &= R(\lambda_1)L(\lambda_1) + R(\lambda_2)L(\lambda_2) + R(\lambda_3)L(\lambda_3) \\ g &= G(\lambda_1)L(\lambda_1) + G(\lambda_2)L(\lambda_2) + G(\lambda_3)L(\lambda_3) \\ b &= B(\lambda_1)L(\lambda_1) + B(\lambda_2)L(\lambda_2) + B(\lambda_3)L(\lambda_3) \end{aligned}$

$$\begin{pmatrix} r \\ g \\ b \end{pmatrix} = \begin{pmatrix} R(\lambda_1) & R(\lambda_2) & R(\lambda_3) \\ G(\lambda_1) & G(\lambda_2) & G(\lambda_3) \\ B(\lambda_1) & B(\lambda_2) & B(\lambda_3) \end{pmatrix} \begin{pmatrix} L(\lambda_1) \\ L(\lambda_2) \\ L(\lambda_3) \end{pmatrix}$$

$$\begin{pmatrix} L(\lambda_1) \\ L(\lambda_2) \\ L(\lambda_3) \end{pmatrix} = \begin{pmatrix} R(\lambda_1) & R(\lambda_2) & R(\lambda_3) \\ G(\lambda_1) & G(\lambda_2) & G(\lambda_3) \\ B(\lambda_1) & B(\lambda_2) & B(\lambda_3) \end{pmatrix}^{-1} \begin{pmatrix} r \\ g \\ b \end{pmatrix}$$

MIXING – UNMIXING: COMPRESSIVE SENSING EXAMPLE

- Use case:
- System type:
- Technology:

Foreign matter in lentils

Multispectral

- Multispectral illumination
- Sensor type: RGB
 Number of acquisitions (mixed): 5
 - Number of bands (**unmixed**): 15

Snapshot multispectral camera

In conjunction with custom high-power multispectral illumination system to suppress ambient parasitic light effect

- Compact spectral camera
- Multiple wavelengths
- Spectral range
- Fast cube acquisition
- Image resolution

3^{cm} x 3^{cm} x 3^{cm} 20 bands VIS+NIR 60 fps 350 x 350

HYPERCOOK

AGRARSENSE

- Downy mildew detection
- Pest detection
 - Aphids
 - Spider mites
 - Thrips
- Water stress detection
- Plant parts segmentation
 - Vine clusters
 - Vine grapes

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

TOWARDS THE PLANT'S DIGITAL TWIN

FUTURE DIRECTIONS

- New optical designs coming soon
- Access to the low SWIR region (400 to 1700 nm) is now possible
- Open to collaboration on new use cases
- Looking out for implementation partners