Manufacturing of high performance optical filters for Multi- and Hyperspectral Imaging

EPIC TechWatch at W3+Fair Jena 2023

Elmar Elbinger, Business Development Nov. 30th, 2023

MATERION // BALZERS OPTICS

© 2023 Materion Balzers Optics

Content

Solutions for Multi- and Hyperspectral Imaging

- Introduction
- Individual filters for filter wheels Solution 1
- Patterned filter arrays Solution 2
- Linear variable filters Solution 3

A global high-tech solutions provider of performance alloys, precision optics and advanced materials

- Publicly traded since 1972-NYSE (MTRN)
- In excess of \$1 billion in sales

What is Multi- and Hyperspectral Imaging?

Capture of images with different spectral bands

- some (multispectral) or
- many (hyperspectral)

one channel (e.g. gray picture)

RGB image

Many different color channels, e.g. 10nm resolution in VIS range

Applications of Multi- and Hyperspectral Imaging

Drone-based environmental monitoring (air-born and space-born applications)

Different spectral bands are used to evaluate certain properties

Band	Spectral	Principal application
	range (µm)	
1	0.45-0.52	Coastal water mapping, soil-vegetation differentiation, deciduous-coniferous differentiation
2	0.52-0.6	Green reflectance by healthy vegetation
3	0.63-0.69	Chlorophyl absorption for plant species differentiation
4	0.76-0.90	Biomass surveys, water body delineation
5	1.55-1.72	Vegetation moisture measurement, snow-cloud differentiation
6	10.4-12.5	Plant heat stress measurement, other thermal mapping
7	2.08-2.35	Hydrothermal mapping

- Specifically targeted fertilization
- Smart agriculture

Solution 1 – Individual Filters

Airbus DS

Filterset with several channels

Hyperspectral camera with > 50 channels

(courtesy of Cubert)

Y W Wang et al., *Nanotheranostics* 1(4): 369-388, 2017

wavelength scan

Spectral resolution: low-high Speed: medium-high

Solution 1 – Individual Filters

PARMS = Plasma Assisted Reactive

Significantly improved SNR/image quality by using PARMS

Solution 2 – Patterned Filter Arrays

Examples for high end applications

- Space-born and air-born imagers (drones, planes)
- Agriculture
- Sorting applications, color measurements

http://www.teledynedalsa.com

Y W Wang et al., *Nanotheranostics* 1(4): 369-388, 2017

Solution 2 – Patterned Filter Arrays

Solution 2 – Patterned Filter Arrays

Prevention of cross-talk between channels by patterned black coatings CrBlack[™] or TiBlack[™]

- High absorption in the VIS to NIR range
- Low reflection in the VIS to NIR range
- Excellent environmental stability

One filter to rule them all

LVFs change their spectral characteristic depending on the position of illumination

Detailed measurement / Qualification

Set-on Wavelength depends linearly on geometrical position on the filter

Long pass

Short pass

variable Shortpass

+

eoo eso Wavelength (nm) 700

750

Page 14

Change of bandpass center wavelength and width with local position on the filters

Solution 3 – Linear Variable Bandpass

Also, possible as bandpass, dichroic, ... Example: FWHM ~ 1.5% within 400-900nm average OD5 blocking the full range of a Si-based sensor $T_{pass} > 97\%$ @ 600nm

We are shaping the Century of the Photon

Thank you very much for your attention

To learn more about Materion and our capabilities, please feel free to contact me:

Elmar Elbinger Business Development

elmar.elbinger@materion.com Phone: +49 3641 3529-42

(f) (in) 🖸 🎔

