October 23, 2023

Filter Advancements for Automotive Sensing

Epic Online Meeting on LIDARs on Chips

Scott Rowlands

Product Line Manager, Automotive Products

Key Components in a 3D Sensing System

Key NIR Sensor Components:

- Light source (Laser)
- Lens system
- Filters

Each of these components must be matched to each other in an optimized design for optimal performance (maximize efficiency and signal-tonoise ratio)

Viavi Low Angle Shift (LAS) Filters with Si:H

 $(\circ$

Viavi Filters Constructed with Hydrogenated Silicon

Hydrogen in amorphous Si moves the absorption edge lower into the low NIR wavelengths

Usable transmission down to ~800nm

The refractive index (n) of Si:H is 3.5 – 3.7 allows for:

- **#1:** Lower cost and higher performing NIR optical filters
 - cost is function of layers and thickness
- #2: Reduces blue shift for light rays at increasing angles of incidence (AOI)
 - Blue shift follows this equation

$$\lambda(\theta) = \lambda_0 \sqrt{1 - \left(\frac{\sin\theta}{n_{eff}}\right)^2}$$

Benefit #1: Enables a Lower Manufacturing Cost

Compared to bandpass filters constructed with traditional materials, filters made with Si:H can enable:

- Filters at a lower cost
 - Si:H filters require less layers & thickness
 - cost is function of layers and thickness

Materials:	# of Layers:	Coating thickness:
Traditional	52	8.2um
Si:H	28	3.2

Benefit #2: Enables a Lower Blue Shift

Compared to bandpass filters constructed with traditional materials, filters made with Si:H can enable:

- Less blue shift:
 - increases the usable BW
 - decreases the required overall BW

Materials:	CWL Blue Shift:	Usable BW at T = 90%	Total BW at T = 50%
Traditional	-13 nm	17 nm	49 nm
Si:H	-5 nm	25 nm	41 nm

Filters with less BW have better signal to noise

Filters for Automotive Sensing - Other Trends

NIR optical bandpass filters in automotive sensing need even narrower bandwidths to improve signal to noise

Solutions that enable this:

- Binning filters and lasers with matched center wavelengths
- Improving manufacturing tolerances

Example: Filter Bandwidth with Typical Specifications

Lasers such as EELs and VCSELs have a CWL distribution due to manufacturing variations

for VCSEL and EEL these commonly range from +/-5nm to +/10nm at 9xxnm

Example for Common Specs:					
Factor:	Spec:	Filter BW to meet spec			
Laser CWL specs	905 +/-6nm	12nm			
Filter CWL specs	905 +/- 4nm	8nm			
Total bandwidth required for these specs		20nm			

Without binning, the entire laser tolerance must be considered in the BW of the filter

Example: Filter Bandwidth w/ Binning & Tight Tolerances

- 1. Bin the laser by sorting into +/-2nm bins Filter BW can be reduced by 8nm
- 2. Bin the filter with tight CWL tolerances Filter BW can be further reduced by 4nm

Binning Example						
Factor:	Bin #1	Bin #2	Bin #3	Bin #4		
Laser CWL specs	899 +/- 2nm	903 +/- 2nm	907 +/- 2nm	911 +/- 2nm		
Filter CWL specs	899 +/- 2nm	903 +/- 2nm	907 +/- 2nm	911 +/- 2nm		
Total bandwidth required	8nm	8nm	8nm	8nm		

The necessary filter BW is reduced by 12 nm! (60% narrower)

- Sensor performance is improved
- Cost is manageable with advanced filter production methods

VIAVI Solutions

Thanks for your attention!

Scott.Rowlands@viavisolutions.com