

Current challenges in optical design EPIC Online Technology Meeting

Holger Münz Principal Optical Design & Concepts ZEISS Corporate Research & Technology

7 November 2023

Trends in optical design Optical design is much more than just optimizing lenses

Multi-scale & hybrid systems Significant benefit from co-design of micro- and macroscopic optics

Thermal

switche

Electrical contacts

Electrical contacts

256 exits

with

16×16

gratings

SCAN^{TINEL}

PHOTONICS

~ 25 mm

exit pupil

"Classical" approach for an automotive Lidar system

- Fully solid state 2D scanner demonstrator for Scantinel
- Separate design of multi-beam PIC emitter and collimator lens

Estimated signal gain: +10 dB

Co-design concept to be optimized for optical performance:

- PIC coupler emission angle & NA
- Intermediate focal plane field tilt and field curvature

flat field,

fixed NA

PIC emitters

aspheric collimator

collimator

V. Blahnik, "Merging optics and photonics", UKODM 2022

End-to-end optimization

Significant benefit from co-design of micro- and macroscopic optics

Thermal

switche

Electrical contacts

Electrical contacts

256 exits

with

16×16

gratings

ZEISS

SCAN^{TINEL}

PHOTONICS

"Classical" approach for an automotive Lidar system

- Fully solid state 2D scanner demonstrator for Scantinel
- Separate design of multi-beam PIC emitter and collimator lens

Estimated signal gain: +10 dB

Co-design concept to be optimized for system performance:

- PIC coupler emission angle & NA
- Intermediate focal plane field tilt and field curvature
- Beam shape and wavefront

flat field,

fixed NA

PIC emitters

aspheric collimator

collimator

V. Blahnik, "Merging optics and photonics", UKODM 2022

Artificial intelligence & novel design methodologies Solution landscapes instead of single designs

- We see first successful applications of AI in optical design
- We can expect automated processes and much larger number of system variants in the future
 our tools should be oriented towards working with many systems

Requirements for a future tool landscape System performance optimization in an open environment

- Unified parametric system description
- Standardized model and data interfaces
- Differentiable quantities throughout
- Compound merit/loss function across modules
- Open optimization interface
- Single visualization environment
- Multi-system capability
- Open environment for own & 3rd party modules

Optimization

Seeing beyond