Simulation workflow with Ansys Optics

EPIC Online Technology Meeting on Optical Design and Simulations: Tools and Use-cases

Flurin Herren, 6 November 2023

Presenter: Flurin Herren

- Optomechanical Engineer at Ansys (previously Zemax, since early 2021)
- Based in the United Kingdom, Ansys Optics ACE Team.
- Background
 - Optical Engineering with focus on Optical Design of Spectrometers and Medical Technology applications such as Optical Coherence Tomography.
 - Mechanical Engineering with a specialization in CAD, CAM, and prototype manufacturing.

flurin.herren@ansys.com

Complete system optimization

Driving efficiency, optimization, collaboration and consolidation

©2023 ANSYS, Inc.

Ansys Optics Portfolio

Ansys

Photonic Engineering

Nano-Chip-Level

- Waveguide development
- Sensor & Emitter development
- Nanostructure design
- HR-AR coating layer design

ZEMAX

Optical design engineering

Optical-Design-Level

- Optical design
- Optical validation
- Optical tolerance analysis
- Mechanical tolerance analysis

Ansys

SPEOS

Lighting & System Engineering

System-Design-Level

- ➤ Individual 3D environment integration
- Lighting evaluation
- Human Vision rendering
- Customer's perception for decision making

From Nano

To Micro

Benefits of using full Ansys optical solution

- Best in class optical tools through product development process
- 2. Single point of contact for simulation process development support
- Seamless workflow and simplified data transfer from photonics design and optical design to in-context system
 - Direct integrations with Multiphysics software solutions, enabling robust system design

Workflow of a Camera module

Lens Stack Optimization

- Design Templates for Starting Point Selection
- Select from glass & plastic lens materials
 - Built-in & custom defined
 - Industry standard analysis methods to track system performance
 - PSF, MTF, Wavefront Error, Relative Illumination
- Optimize for manufacturability
 - Control surface slope and system tolerances
- Automation via ZOS-API
 - Connections with Matlab, Python, Mathematica

©2023 ANSYS, Inc.

Structural Thermal Optical Performance

- 1. Perform nominal optical system design in OpticStudio
- 2. Send to CAD to incorporate optomechanical system design
- Send to FEA to apply structural and thermal loads (surface deformation & thermal index variation)
- 4. Import deformed system to OpticStudio to analyze optical performance.

Thermal & Structural Analysis

Optical simulation (Degraded)

Imager Development

light absorbed by silicon substrate

free carriers generated in substrate

collect free carriers

Optical simulation for microstructure

- Color filter array, and microlens optimization
- Optical pixel cross-talk
- Scattering and absorption in metallization layers

Electrical simulation for charge behavior

- Electrical pixel cross-talk
- Dark current and thermal effects
- Signal-to-Noise Ratio

Optical efficiency

$$OE = \frac{\# of \ absorbed \ photons}{\# of \ incident \ photons}$$

Internal quantum efficiency

$$IQE = \frac{\# of \ collected \ carriers}{\# of \ generated \ carriers}$$

External quantum efficiency

EQE =
$$IQE \times OE = \frac{\text{# of collected carriers}}{\text{# of incident photons}}$$

Workflow Overview: Full Scene Visualization

Ansys / SPEOS

<u>Scene</u>
3D environment, moving objects, lighting & materials

Lenses shape, optical materials, mechanical packaging

Full Camera Simulation

<u>Imager</u> Micro lenses array Color filter array

Environment Integration

1. Import CAD model

2. Pixel grid projections

Green lines represent 1-pixel segments Yellow lines represent 10-pixel segments

Geometric and **Photometric simulations**

Geometric simulations Simulation time: < 1 minute

Photometric simulations Simulation time: 30min on 6 cores computer

NIR emitter and camera simulation

Thank you for attending this presentation

Question section

Additional Technical Resources:

- <u>CMOS Sensor Camera Image Quality Analysis in a</u>
 <u>3D Scene Ansys Optics</u>
- <u>CMOS Sensor Camera Sensor Characterization –</u> <u>Ansys Optics</u>
- <u>Designing Cell phone Camera Lenses Part 1: Optics Knowledgebase (zemax.com)</u>

