

Benefits of Silicon Nitride

Large transparency window: 400 – 4'000 nm

Reference Silicon: 1'100 – 4'000 nm

Muñoz et. al., Sensors **2017**, 17, 2088

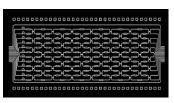
Low propagation loss: < 1dB/m possible Reference Silicon: 2.5 to 1 dB/cm

High optical power: > 5 W per waveguide (10⁹W/cm²)
Reference Silicon: 0.1 W per waveguide

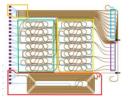
Scalable to volume

required for may applications

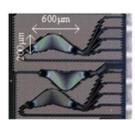
Photonic Integration: Motivation for low loss PICs


Why are losses important?

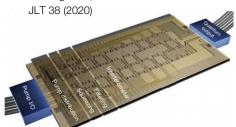
- Long delay lines require of 10s of cm
- Detection of photons coming back
- Phase noise is related to losses



- Phase noise of AWGs is related to losses
- Tunable narrow linewidth lasers
- Narrow linewidth Filter



- Assymetric MZI interferometers
- High Q ring resonators
- Every photon counts



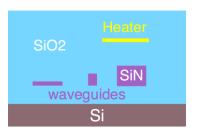
Martin et al., JLT 36 (2018)

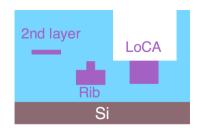
Cheung et al.,

Arrazola et al., Nature 54 March 2021

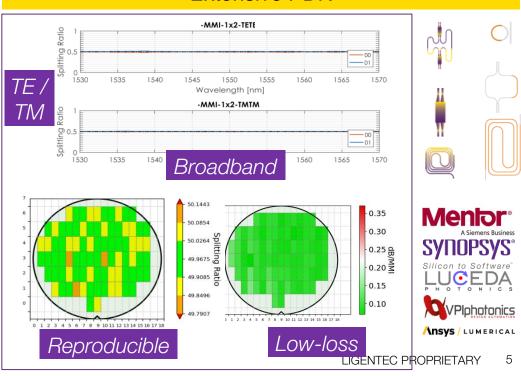
Versatile Platform

3+ thicknesses


10+ process modules


800 nm

350 nm


150 nm

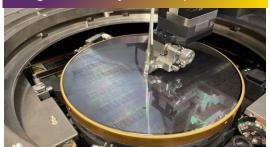
custom

Extensive PDK

Simplify the access to PIC technology

Seamless journey from Idea to Volumes

Entry: R&D & Prototyping Open access, low barrier



Fast prototyping

- Established technology
- Fixed layer stack
- Extensive PDK
- Regular MPW runs
- Custom runs
- Design / layout support
- Characterization
- Packaging support

Optimize: Development

High flexibility & competence

Custom PIC Developments

- Engineering studies
- Layer stack adaptation
- Custom integrations

Ligentec Labs

Early technology access

Manufacturing: Supply Quality and guarantee

Pilot Fabrication

Pilot and niche quantities

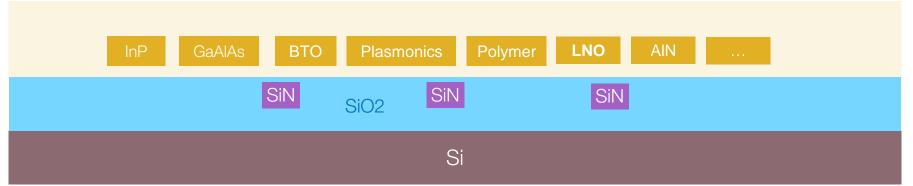
Volume Fabrication

- Large volumes
- High-capacity wafer fab
- Fully automated testing
- Automotive quality system

The next step – enhance the SiN PIC platform

SiN – The platform for monolithic & heterogeneous integration

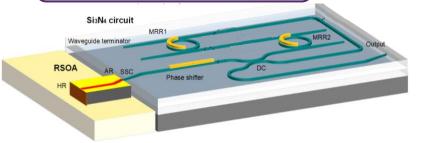
Use SiN as base platform for general circuitry

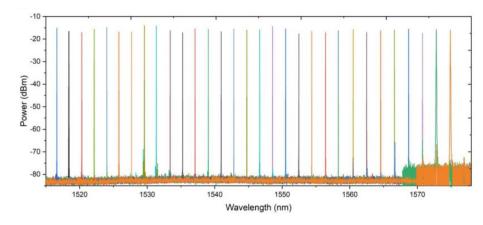

- Comprehensive PDK
- Standard I/Os
- Scalable to volume

Add materials as required by application

100 GHz bandwidth, 1 volt integrated electro-optic Mach-Zehnder modulator at near-IR wavelengths

FORREST VALDEZ, VIPHRETUO MERE, AND SHAYAN MOOKHERJEA* University of California, San Diego, Department of Electrical and Computer Engineering, La Jolla, California 92093-0407, USA




Hybrid Integration example

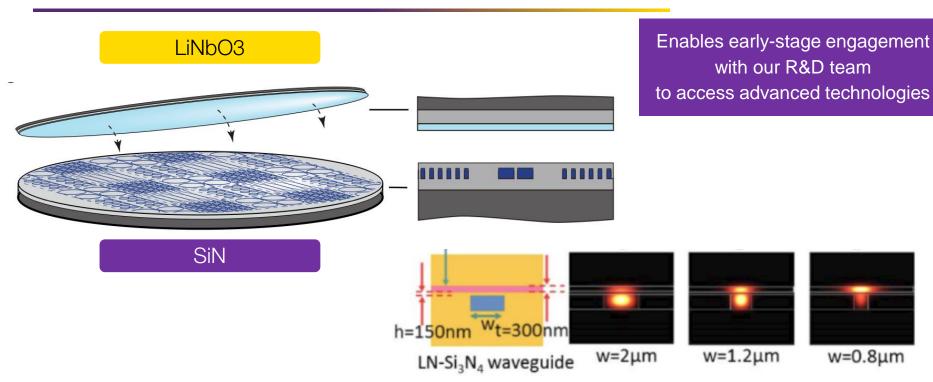
Tunable Narrow Linewidth Lasers

RSOA Phase shifter MRR2

Narrow Linewidth External Cavity Lasers

Linewidth: <3kHz

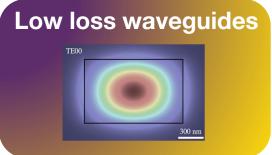
SMSR: -70dB


Max power: 34mW

Tuning: 58.5nm

Heterogenous Integration example

LNOI / SiN wafer level bonding



Summary

Low Loss SiN - Platform Overview

MPW / Dedicated runs Short turn around

Flexible R&D line Volume line

Actives Integration

