

System-aware PIC Design for FSO, Quantum, and Telecom Applications

EPIC TechWatch @ ECOC 2023

Chris Maloney, Director of Business Development

October 4th 2023

We empower you to define the cutting edge.

1

SOFTWARE AND SERVICES

for Photonic Design & Analysis

Industry

Leading

Interoperable

Integrated

- Market leader with 25+ years of experience
- Regional offices in Europe and North America
- Global network of resellers and representatives

We empower you to define the cutting edge.

VPIphotonics Design Suite[™]

We empower you to define the cutting edge.

Software

Solutions

VPItransmissionMaker Optical Systems

Applications

- Short-reach, Optical Interconnects
- Aggregation, metro, core networks
- Ultra-long haul DWDM
- High capacity, high-speed
- Optical networking
- HFC, RoF, Microwave photonics
- LiDAR, Satellite Communications

- MM/SM transmission, amplification
- Amplification, regeneration
- Coding, modulation, DSP

Eye Diagram

• Compensation, equalization

In-Phase

Benefits

- ✓ Analyze OSNR, Q, BER, TDECQ, ...
- Evaluate component performance and impairments
- Compare technology choices and upgrade strategies
- ✓ Optimize equipment placement and mitigation techniques

VPIcomponentMaker Photonic Circuits: Photonic and Optoelectronic Components

Semiconductor Lasers and Transmitters

Benefits

- Fast design & optimization of PICs and multisection semiconductor devices
- Study alternative design options
- Tune and optimize circuit parameters
- Investigate fabrication tolerances

Perform sensitivity analysis

Designing PICs for Free Space Optical Systems

Designing PICs for Free Space Optical Systems

Free-Space Optical Satellite Link /

√ The FSO_Channel module supports atmospheric effects for terrestrial and satellite (up-/down-) link.

✓ Scintillation model: LogNormal and GammaGamma

1e-12

1e-13

1e-14

1e-15

1e-18

1e-19 1e-20

Ž 1e-21

1e-22

1e-23

1e-24

1e-25 0.01

ହି ମୁ - 1e-16 - 1e-17

Application Examples → OS → Short Reach → Scintillation on a FSO Satellite Link

References:

CNsquared Altitude Profile (Wind Speed)

8

Sampled-Grating Distributed Bragg Reflector Laser for Frequency-Modulated Continuous Wave LiDAR System

This demo shows a sampled-grating distributed Bragg reflector (SG-DBR) laser used for frequency-modulated continuous wave (FMCW) LiDAR systems. It illustrates one of the challenges in developing a functional FMCW LiDAR - the residual nonlinearity of the laser, and demonstrates how digital predistortion can help mitigate this effect. To learn more about FMCW LiDAR, please check the application example [1].

Copyright VPIphotonics. All rights reserved. Chris.Maloney@VPIphotonics.com

Sampled-Grating Distributed Bragg Reflector Laser for Frequency-Modulated Continuous Wave LiDAR System

This demo shows a sampled-grating distributed Bragg reflector (SG-DBR) laser used for frequency-modulated continuous wave (FMCW) LiDAR systems. It illustrates one of the challenges in developing a functional FMCW LiDAR - the residual nonlinearity of the laser, and demonstrates how digital predistortion can help mitigate this effect. To learn more about FMCW LiDAR, please check the application example [1].

Copyright VPIphotonics. All rights reserved. Chris.Maloney@VPIphotonics.com

Designing a PIC Transmitter for QKD Systems

Simulation Tool for QKD Applications

VPItransmissionMaker Optical Systems classical system simulation environment

together with

VPItoolkit QKD

for system-level CV/DV-QKD simulations

provides models for QKD transmitter/receiver, parameter and secret key rate estimation, and application examples.

✓ System design:

various implementation options for QKD systems and sub-systems

✓ Study of co-existence scenarios:

Raman scattering, cross-talk from classical channels, etc.

\checkmark Account for component imperfections:

thermal and quantization noise, RIN, phase noise, biased beam splitting ratios, dark count rates, after pulsing, etc.

✓ Optimization of system parameters:

modulation amplitude, photons per pulse, filter bandwidth, BB84 basis probability, symbol rate, etc.

Estimation of performance criteria:

max possible secret key rate, transmission distance, etc.

Example: Critical Building Blocks for DV-QKD

DV-QKD symbol selection & post processing

- Random number generator for (T12-like) BB84 protocols
- Sifters
- Secret fraction estimator for T12 DV-QKD

DV-QKD detector: SPAD Input: Optical signal Output: Time stamps

SPAD model includes:

- Dead time
- Gaussian timing jitter
- Exponential timing jitter
- After-pulsing
- Dark counts
- Gating

Analysing time stamps Input: Time stamps Output: "click" / "no click" for each symbol time bin

Sifter

Sifter

rx

x stat

z stat rz

Acceptance window can be reduced for better dark count suppression.

Weak-coherent Source for QKD Systems

General-purpose circuit simulator, SMART PDK library + custom PDK BBs ⇒ Virtual testbed for laser characterization and design optimization

193.56

193.58

193 54

193.51

Weak-coherent Source for QKD Systems

TLD: Tunable Laser Diode PM: Phase Modulator PC: Pulse Carver VOA: Variable Optical Attenuator

Realistic DPS Tx with laser RIN & phase noise

General-purpose circuit simulator, SMART PDK library + custom PDK BBs ightarrow Virtual testbed for PIC characterization and design optimization

Weak-coherent Source for QKD Systems

TLD: Tunable Laser Diode PM: Phase Modulator

PC: Pulse Carver

Realistic DPS Tx with laser RIN & phase noise

- Case A: PM with 180° phase shift
- Case B: PM with 175^o phase shift

General-purpose circuit simulator, SMART PDK library + custom PDK BBs ⇒ Virtual testbed for PIC characterization and design optimization

Discrete Variable QKD System Scenario

Output of DPS-Tx *circuit-level simulation* applied in DV-QKD *system-level evaluation*

Copyright VPIphotonics. All rights reserved. Chris.Maloney@VPIphotonics.com

Discrete Variable QKD System Scenario

Output of DPS-Tx *circuit-level simulation* applied in DV-QKD *system-level evaluation*

- Realistic DPS Tx
 - laser RIN & phase noise
 - tuned PM with 180° or
 - detuned PM with 175^o
- Ideal DPS Tx
 - no laser RIN or phase noise
 - tuned PM with 180°

System-level simulation results

(for Link loss of 4dB)

DPS Tx modeling	QBER [%] (DCR=0 Hz)	QBER [%] (DCR=100 kHz)
Ideal	0	0.12
Tuned Realistic	0.09	0.20
Detuned Realistic	0.17	0.35

DCR - dark count rate

Designing PICs for Datacom/Telecom

Designing PICs for Datacom/Telecom

100 Gb/s PAM-4 Link with Silicon Photonics Microring Modulator

100G MRM-Based PAM4 Link

Simulation Results for Variable Fiber Lengths and Amplitude Levels

Contact us for a free demo or software evaluation!

- chris.maloney@VPIphotonics.com
- ➤ sales@VPIphotonics.com

- Integrated design workflow enables systemlevel validation for PIC designs
- Investigate the contribution of PIC impairments on overall system metrics
- Library of over 800 examples allow for quick investigation of cutting edge designs for a wide range of applications

We empower you to define the cutting edge.