

4th October 2023

EPIC TechWatch: Scaling up the photonic testing back-end

About us

- VLC Photonics offers Photonic Integrated Circuit (PIC) engineering services, focused on design and testing.
- **C** Company founded in 2011.
- Confices and clean-room labs in Valencia Technological Campus (Spain).
- **E** 25 members of extensive academic and industrial experience, and keep hiring.
- Part of Hitachi High-Tech group since 2020.

About us (II)

OHITACHI High-Tech Corporation

HHT optical components supply

PIC application markets

Communications Computing & Al

Quantum

Biosensing

PIC development cycle

Characterization and test needs

- It is still critical to do extensive component / circuit characterization when validating PIC designs in engineering.
 - To validate fabrication process and its tolerances through sensitivity analysis (specially needed in photonics).
 - To confirm the intended layout functionality, and feedback the designs for statistical modelling.
 - To sort out known good dies (KGD) and provide feedback on foundry yield, for accelerating ramp up.
- When moving to PIC volume production, scalability becomes an issue:
 - Functional circuit testing is still required beyond fab metrology and PCM.
 - Need fast and low cost Wafer/KGD sorting/binning before packaging.
 - Significant CAPEX for parallelization, engineering and setup time required.

Advantages of outsourcing the photonic back-end

E Infrastructure investment:

- Clean-room lab
- Opto-electronic probing stations
- High-end instrumentation
- Redundancy and consumable stocking
- Maintenance for 24/7 operations
- Quality certifications & calibrations

E Engineering expertise:

- Photonics
- Automation
- Big data processing and analysis
- **E** Timing:
 - Procurement
 - Installation and configuration
 - Hiring and training

Characterization & Testing facilities

VLC 1172

Two clean room labs (ISO class 6 and 8) with:

- C Optical microscopes & SEM for detailed visual inspection
- **C** Optical (vertical and edge light coupling) and electrical probing:
 - **E** 5 semi-automated bare die characterization setups
 - **E** 1 manual electrical wafer tester
 - **E** 2 fully automated opto-electronic wafer testers
- E Electrical measurement instrumentation for DC and RF signal testing up to 110 GHz and optical equipment to work from visible (400 nm) to mid-IR (up to 5 μm).
- **E** Test assembly:
 - **E** 1 manual & 1 automated wire-bonder
 - **E** 1 flip-chip tool

- Testing starts at the layout phase, prior to fabrication:
 - <u>Test structures:</u>
 - Component DoE's
 - Built-in test circuits
 - Placement:
 - Electrical and optical port positions
 - Port pitch
- Assembly Design Kits (ADKs)
 - Available for some foundries and EDA software frameworks.
 - Compatible with test and packaging requirements

Measurement planning and execution

• Detailed test plan:

- Measurement campaign specification
- Failure mode & Effects (FMEA) / root cause analysis (RCA)
- Agile methodology
- Quality system in place:
 - ISO 9001 certified and audited annually
 - Well documented processes and work instructions
 - Calibrated instruments and measurements
 - Redundant parts in stock

• ESD safe operations:

- Controlled environment humidity and ionization
- Compliant tools, furniture and instruments
- Custom jigs, chucks and holders
- Verified grounding, constant monitoring system
- Extensive ESD training for personnel

Visual inspection

Parts inspection:

- Full tracking
- Inventorying, reception reporting
- Safe storage
- Confidentiality preserved

Chip/wafer automated inspection:

- ID and fiducial recognition
- Epitaxy issues
- Litho & etching tolerances
- Defective metallization
- Damaged structures
- Dirt and resin leftovers
- Surface & side scratches

Probing

- Alignment tolerances 1-2 orders of magnitude stricter than in electrical probing!
- The electrical probes should ideally be placed in N/S sides of the PIC.
 - Number of electrical ports constantly increasing!

			Setup side	Yes/No	Probing element
N		Ν	\checkmark	DC / RF	
W	PIC	E	S	\checkmark	DC / RF
	c		E	\checkmark	Vertical fiber, Vertical FA, Fiber, FA
3		w	\checkmark	Vertical fiber, Vertical FA, Fiber, FA	

Optical probing						
Number of fibers	1 - many					
Fiber pitch	127 μm / 250 μm					
Type of fiber	SMF / PMF / Specialty					
Vertical fiber						
Electrical probing						
Type of probe	DC / RF					
Number of needles	2 - many					
Needle distribution	GSG, GSGSG, DC+GSGSG+DC					
Needle pitch (µm)	100 μm / 150 μm					
Bandwidth (GHz)	Up to 110 GHz					
	Optical Number of fibers Fiber pitch Type of fiber Electrica Type of probe Number of needles Needle distribution Needle pitch (µm) Bandwidth (GHz)					

Die-level photonic probing

- Typical configuration in an optical table with manual or piezoelectric positioners for the electrical and optical probes.
- Vision system can be used for edge coupling (top image) and for vertical coupling (tilted view).
- Not scalable and poor repeatability, but usually good enough for R&D and prototyping.
- Class 100k (ISO 8) clean room or even room air ok.
- PIC test assemblies can help on speeding up the measurement.

Automated probing and testing

Full production enclosure wafer-level testers (up to 12") in class 6 clean room

Automated probing and testing (II)

< 4s optical alignment, < 0.1 dB repeatability

Fully automated data collection and processing

Die and bar level testing possible

Test setup ready for OSAT scale-up

- **E** Edge-coupling wafer access through deep-etch trenches or v-grooves.
- **E** Several types of custom optical probes (single channel and multi-channel)
- Adaptable Mode Field Diameter (2.3 10.4 um)

Measurement

Passive components

- Examples: splitters, combiners, filters, reflectors, etc.
- <u>Parameters to measure</u>: insertion loss, coupling loss, excess loss, spectrum, polarization dependency, cross-talk, extinction ratio, etc.

Active components

- Examples:
 - o P-i-n, APDs, SPADs
 - DFB, DBR, VCSELs, PCSELs, hybrid, tunable lasers, SOAs
 - Mach-Zehnder, ring, & electro-absorption modulators, switches
- <u>Parameters to measure</u>: Optical power spectrum, integrated power, voltage-current curve, extinction ratio, scattering matrix (S-parameters), temperature dependence, etc.

Other non-photonic components

• Examples: electronics, RF devices, MEMS, micro-lenses etc.

Examples of previous projects:

DUT	Structures	Measurements
Six 6" wafers, >300 dies	>5k	~50k
Two 8" wafers, >1800 dies	>14.5k	~58k
>50 dies	>140	>31k

Example times

Probing time:	4 s
Measurement time:	1 s
# measurements:	50k

TOTAL TIME = ~3 days

- Fast probing and trace acquisition times are essential when scaling up.
- Smart characterization plan and execution is a must for insightful but time-practical test campaign.

Process control and yield analysis

Component sensitivity analysis

Example of design parameters sweep over 140 test structures in 7 reticles

- Repeatability of bare die measurements with manual alignment is poor (>0.5 dB).
- WLT ensures that alignment and trace acquisition are done automatically with minimal variations (mechanical, thermal etc.)

RF testing key for next-gen datacom PICs

- Lightwave Component Analysers (LCA's) for parametric testing of devices like high speed modulators in transceivers.
 - Up to 110 GHz turn-key test system for optical RX and TX
 - Suitable for die and wafer level testing
 - Return to zero and nonreturn-to-zero (RZ / NRZ) and pulse amplitude modulation (PAM) formats
 - S-parameter testing over the full 1260 nm to 1620 nm range

PIC testing trainings

- 2-5 days training at our facilities in Valencia
- Basics of photonic test lab
- Wafer, chip and probe handling
- Electrical and optical probing
- Instrumentation control and measurement
- Data processing and analysis

Thank you for your attention!

Contact details

info@vlcphotonics.com

www.vlcphotonics.com

Y

@vlcphotonics

(in)

linkedin.com/company/vlc-photonics

