Integration for Tomorrow

Chip Integration Technology Center

▞┊**┎┎**╼╦┇╟┲╝══╤┲╢╱┊┎┎╼╦┇╟┲╝══┲┲╢<u></u>

EPIC - Two sides of one Coin Sander Dorrestein – CITC Senior Electro-Optical packaging engineer

Chip Integration Technology Center

▞┊╔┎╪╦┇╟ᡛ╝══╤╂╢╱┊╔┎╪╦┇╟ᡛ╝══╤╂╢

About CITC - who we are

- Joint innovation center founded in 2019
- Initiative of NXP, Nexperia and Ampleon
- Powered by TNO and TU Delft
- Located at Noviotech Campus, Nijmegen

About CITC - what we do

- Development of enabling technologies for semiconductor and photonics packaging
- Create ecosystem to accelerate innovation in key application areas:
 - Power electronics
 - RF and mmWave
 - Advanced & Additive Manufacturing Packaging
 - Photonics Packaging
- Education and training
 - Semiconductor Packaging University Program
 - Internships and graduation/PhD assignments
 - Enthuse the young

About CITC: what we offer

Access to innovation

- 2- up to 5- year research programs
- Together with partners

Access to infrastructure

- Facilities support innovation and education programs
- Demo and application lab
- Available to third parties

Access to education

- Targeted education and training for young talent
- Together with companies and educational institutes

Access to innovation – Innovation programs

Two sides of one coin – MicroElectronics meets Integrated Photonics

Two sides of the coin – MicroElectronics meets Integrated Photonics

Typical MicroElectronics assembly

Batch / Strip / Panel processing Multiple assemblies per lead frame Reduced time for product handling Automated loading and unloading Standardized interface assembly equipment **Typical Photonics assembly**

One piece flow Single assembly per carrier Long product handling time Complex systems Application specific tooling required

Available to packaging engineers

Packages

 Metal packages, Ceramic packages, LTCC packages, Plastic packages, On board assembly

Advantages of these packaging platforms

- Hermetic packaging
- Thermal
- High-performance and reliability

Disadvantages

- High cost per piece
- Difficult to scale for manufacturing
- Design flexibility

9 / 14-11-2023

Scalable manufacturing – A step into Semiconductorization photonics

Strip of ACP transistors

Semiconductorize photonics industry – Scalable manufacturing

Strip of "butterfly" packages

Air cavity package for Photonics Assembly

- Air-cavity package using low-moisture absorption and high temp liquid crystal polymer (LCP)
- Robust design provides near-hermetic performance
- Excellent mechanical reliability
- Good electrical and thermal performance
- Thermal expansion matched to minimize differential thermal stresses
- mold 2, 4, 8, 16 or 32 in a single strip (extended strip)
- Base of the package is a mechanically stable and robust platform

Plastic package elements

Integration for Tomorrow

- Packages are molded around lead frames in a multi-strip format (2K moulding)
- Formulated Plastic to match the CTE of copper for low stress and reliability
- Leads are coated with moisture resistant polymer before injection molding
- Thermal-Mechanical rigid base platform ensures the stability of the optical and electrical assembly inside the package
- Lead frame configuration allows for automation of the assembly process steps (indexing)

Build Process flow

1. Start 2. Base attach 3. Mechanical assembly

Build Process flow

4. PIC attach

5. Wire bonding

6. FAU termination

7. LID attach 8. Cable termination 9. Package singulation

Air cavity plastic package features

Cost efficient, roughly 50% cost reduction BOM

Design freedom and flexibility

Mechanically robust package

Automation of each process step, indexing

Near hermetic package (10⁻⁸)

Low investment cost for prototype tooling

What's more to come...

- Panel level assembly platform for Hybrid Integration of Integrated photonics and Electronics
- Through polymer RF vertical interconnect Via technology featuring very high aspect ratio
- Direct Printing of Cu bumps, both at wafer level, or panel level
- Advanced packaging concepts by printing of metal inks, which potentially offers very significant advantages over established semiadditive methods

Thank you for your attention!

Chip Integration Technology Center

▞**┊**<mark>┎┎╞╦┇╟┍╝══╤┎</mark>╢╱┊╓┠╧╦┇╟┍╝══╤┎╢<u></u>

19 / 14-11-2023