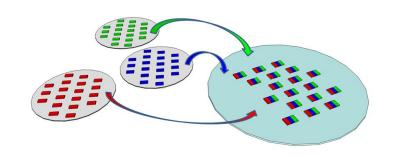
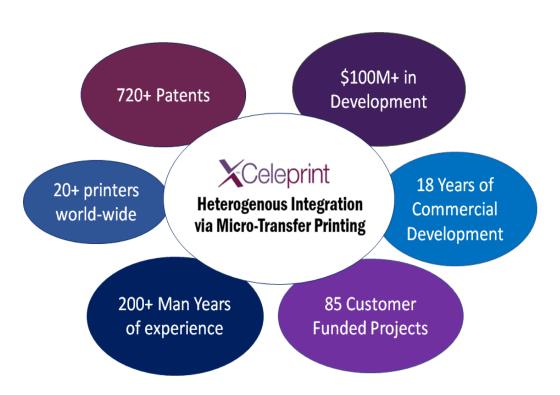


EPIC Technology Meeting on Microelectronics & Photonics – Two Sides of One Coin – 14/11/2023

Micro-transfer-printing for Integrated Photonics

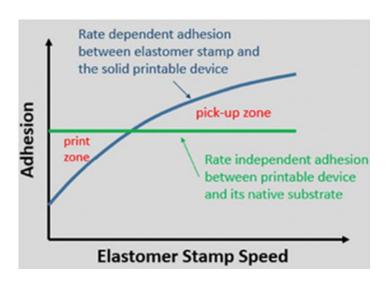
We create advanced micro assembly solutions


Core technology: Micro-Transfer Printing (MTP)


• Wafer scale pick and place of micro-components exploit visco-elastic property of PDMS stamps

Business Model: Licensing of the technology

- Development of micro-transfer printing solutions for specific applications
- MTP prototype services



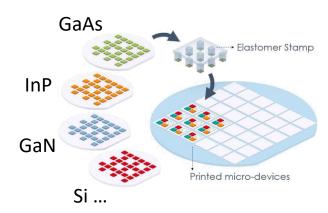
MTP of 20x28 array of 40x40um² GaAs devices onto a silicon substrate.

1. Micro Transfer Printing for Micro Assembly of Heterogeneous Integrated Compound Semiconductor Components, CS MANTECH Conference, 2022.

Step 2: Fabricate source wafer to match **Step 1:** choose target layout Step 3: Release devices on source wafer target layout Device/chiplet Source wafer Tether Sacrificial layer Anchor Release layer has been chemically 5 µm removed Step 5: micro transfer printing **Step 6:** connect devices **Step 4:** create stamp to match target layout

Elastomer Stamp

Printed micro-devices



Custom post size and spacing to match

device design

Why MTP for integrated photonics?

Multiple components integration

Versatile Material Sets and Substrates Manipulate fragile components

Tolerant to Wafer size mismatch

VT2	rtin	C VA	ZTAK
JLa			afer
		0	

- Dense component arrays
- Pre/post fabrication

Benefits

- Source wafer exploitation
- known good die

Transfer

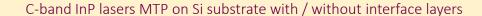
- Scalable using parallel transfer
- Chips from different wafers
- Throughput
- Flexibility
- Mix and match approach

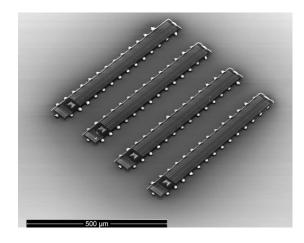
Print

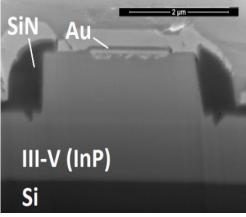
- passive alignment:
 - $< 0.5 \mu m$

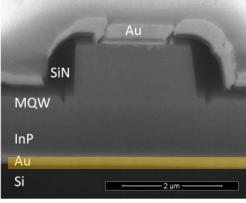
- Throughput
- Enable III-V onto SiPh
- roadmap: <0.1 μm alignment

Micro Transfer Printing for Micro Assembly of Heterogeneous Integrated Compound Semiconductor Components, CS MANTECH Conference, 2022.

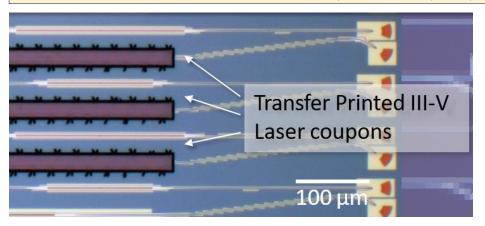


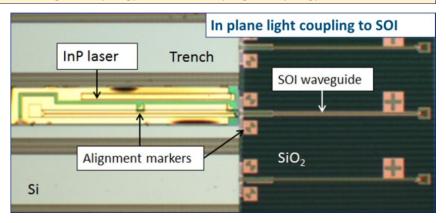





III-V MTP onto SiPh substrates:

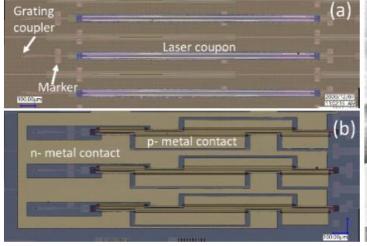
- Operational devices & coupons of material
- Single posts & arrays printing
- Type of substrates:
 - Si, SiO2, glass, GaAs, InP
 - SOI, SiN (Top, buried oxide, substrate, inside recess)
- interfaces:
 - Adhesive layers: Intervia // BCB
 - Super-thin-adhesive (<30nm)
 - Adhesive-less to engineered layers
- Different light coupling configurations:
 - edge, evanescent, grating

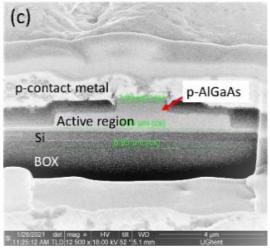


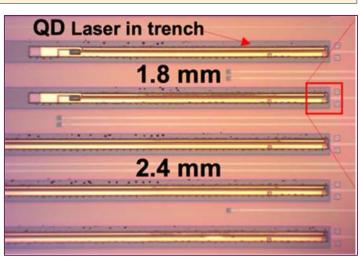


Examples of integrated photonics using MTP

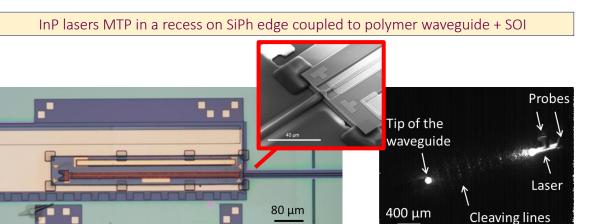
C-band InP lasers MTP on Silicon photonics – Top SOI (evanescent light coupling) - In a recess (edge coupling)

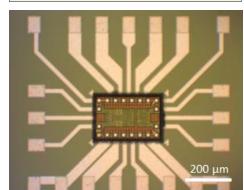




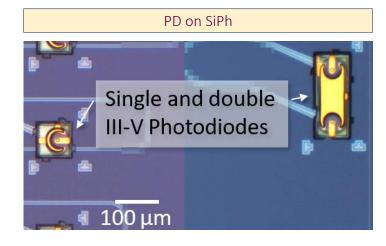


GaAs O-band QD lasers MTP on Silicon photonics – Top SOI - In a recess

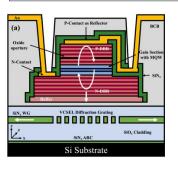


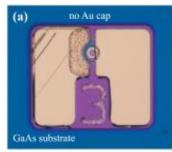


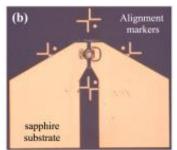
- 1. Micro Transfer Printing for Micro Assembly of Heterogeneous Integrated Compound Semiconductor Components, CS MANTECH Conference, 2022.
- Micro-transfer printing for advanced scalable hybrid photonic integration. May 30, 2018. European Conference on Integrated Optics (ECIO 2018).
- Integration of Edge-Emitting Quantum Dot Lasers with Different Waveguide Platforms using Micro-Transfer Printing, JSTQE 2023

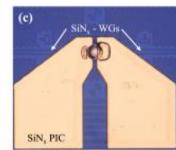


Other examples of integrated photonics using MTP

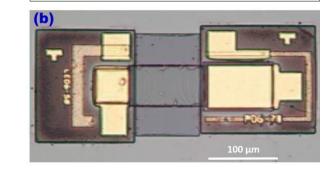


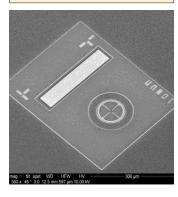



EIC on SiPh interposer

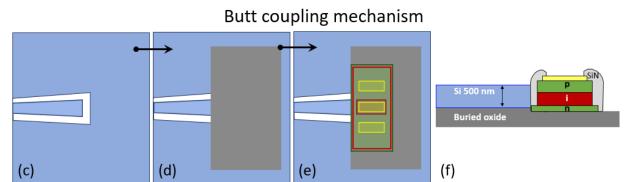


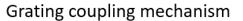
VCSELs on Sapphire and SiPh

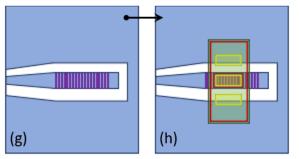


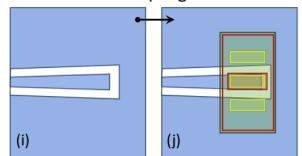


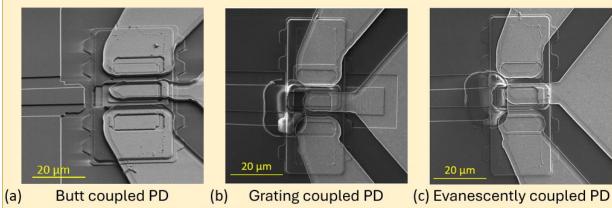
LED+PD interconnect on Si

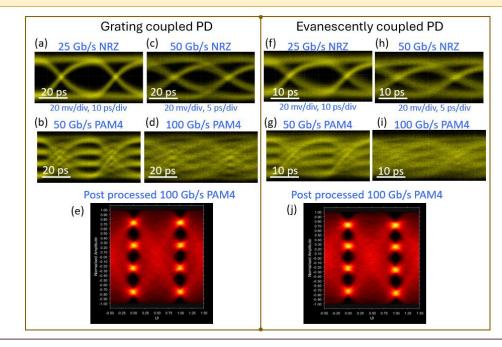


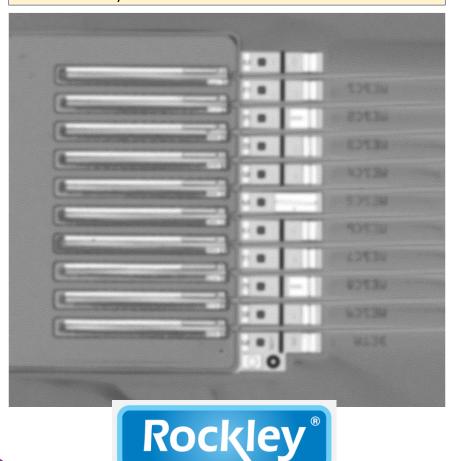


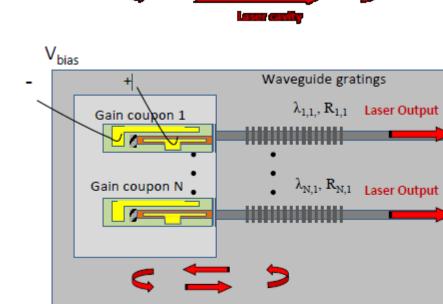

- Edge-Coupling of O-Band InP Etched-Facet Lasers to Polymer Waveguides on SOI by Micro-Transfer-Printing, in IEEE Journal of Quantum Electronics, 2020
- . R. Loi et al., "Micro transfer printing of electronic integrated circuits on Silicon photonics substrates," in ECIO 2022 conference. May, 2022.
- 3 Top-hit EU project
- 1. Enabling VCSÉL-on-silicon nitride photonic integrated circuits with micro-transfer-printing." Optica 8.12 (2021): 1573-1580.
- 5. Low-power-consumption optical interconnect on silicon by transfer-printing for used in opto-isolators." Journal of Physics D: Applied Physics 52.6 (2018).
- Microtransfer Printing High-Efficiency GaAs Photovoltaic Cells onto Silicon for Wireless Power Applications." Advanced Materials Technologies 5.8 (2020): 2000048.

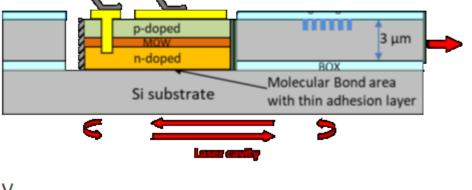

Tyndall's O-C-band PDs on SiPh from Cornerstone




Evanescent coupling mechanism




H. Mathuganesan, "100 Gbps PAM4 ultra-thin photodetectors integrated on SOI platform by micro transfer printing," Opt. Express 31, 36273-36280 (2023)


Array of 10 laser MTP in a recess in the SOI

PHOTONICS

Laser cavities

development of MTP in research projects

- Completed >3 EU projects: TOP-HIT, MICROPRINCE, HIPERION
- Active projects XCEL is directly involved:
 - CALADAN (EU, 6M): wafer scale assembly of Terabit/s optical engines by MTP
 - INSPIRE (EU, 4.9M): InP photonics and SiN silicon photonics by MTP
 - AMBROSIA (EU, ~5M): InP components on SiN photonics for sepsis diagnosis
 - **BAMBAM** (**EU**, 4.3M): uLED and uIC mass transfer
 - DTIF, M-Engine, ...
 - ...more proposals submitted
- Other >5 EU projects involving MTP:
 - MORPHIC, PATTERN, PHORMIC, PUNCH, TRANSVERSE, VISSION
- EU non-EU Pilot lines and consortia including MTP:
 - PhotoniXFAB, Photon Delta, Lightup, Medphab
- ~20 photonics customer active projects

Objectives:

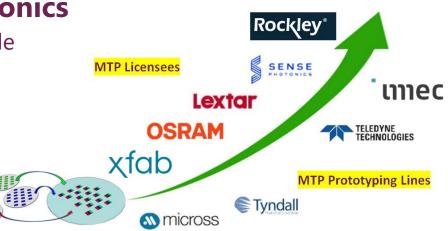
- I. We want to accelerate use of MTP into production
 - Path to production: Prototypes -> Pilot volume -> High volume
- II. We want be ready for PICs at large volume
 - An ecosystem of suppliers is currently in development
 - A standardization process is required

Supply chain leverages:

- Partners/customers from previous/active projects
- Photonics consortia / pilot-lines

Actions:

- I. Increase TRL + standardization
- II. Create demos
- III. Build PDKs,


MTP is a key enabling technology for integrated photonics

- Different functionalities integrated on the same platform at wafer scale
- <0.5 um alignment, Edge/evanescent light coupling
- Multiple licensees are moving into commercialisation
- High volume products will be out in 2024 /2025

Contact us with any questions

Supply Chain Scientist

Ruggero Loi: rloi@x-celeprint.com

Director - IP

Ron Cok: rcok@x-celeprint.com

Sr. Dr. Technology / Business Dev - GM Supply Chain / Commercialization

David Gomez: dgomez@x-celeprint.com

