

Development of a Lab-on-Chip Based Biosensor-array System for Life Detection on Mars and Icy Moons

Henk Leeuwis
Vice-President, Strategy and Innovation
h.Leeuwis@lionix-int.com

EPIC Meeting on Photonics for Space: Opening New Horizons at Exail Paris, 21-22 September 2023

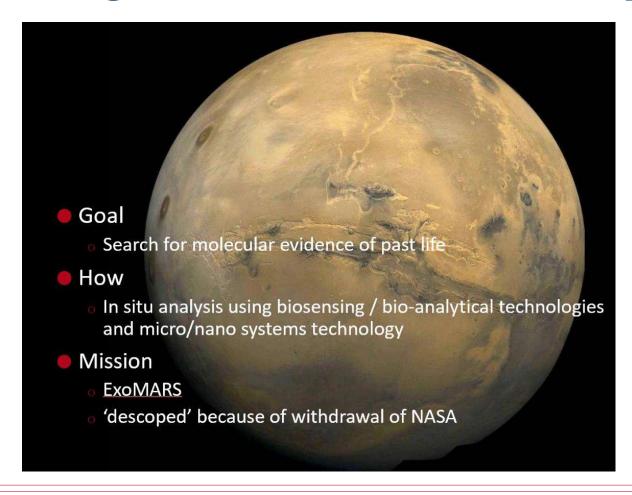
Our Mission

LioniX International is a leading alobal provider of customized microsystem costs in particular integrated phronics ed, in scalable production photonics ed, in scalable photon

societal challenges

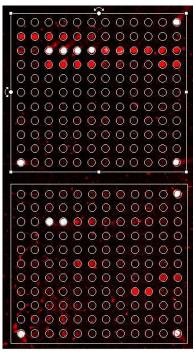
Who:

- Located in Enschede, The Netherlands
- 80 people and growing; 50% PhD
- Tele/datacom, Life Sciences, Metrology
- Space: NSO ESA (TRP-GSTP-ARTES) EU Horizon
- Proprietary Integrated Photonics platform
 - Special features for communications, sensing, lasers
- Development and production for applications in
 - Integrated photonics based light/signal/data processing:
 5G/6G and (RF) satellite systems, visible light engines (AR/VR)
 - Lab-on-a-Chip and (bio)chemical sensor systems


Background: Life Marker Chip

- LMC Team Leaders
 - Mark Sims, Leicester Univ. (UK)
 - Dave Cullen, Cranfield Univ. (UK)
- LMC Instrument Team
 - LioniX, Dutch Space (NL), Leicester University, Cranfield University, Magna Parva (UK), Kayser Italia, SSTL (UK), and Imperial College (UK)

Netherlands Space Office


Life Biomarkers on Mars

Antibody microarray technology

allows the attachment of thousands of probes in a few square centimetres on a solid support. Smaller reaction volumes and higher reaction kinetics, together to its great potential for miniaturization and robotization, make microarray technology a good system for in situ analysis of biomarkers in astrobiology.

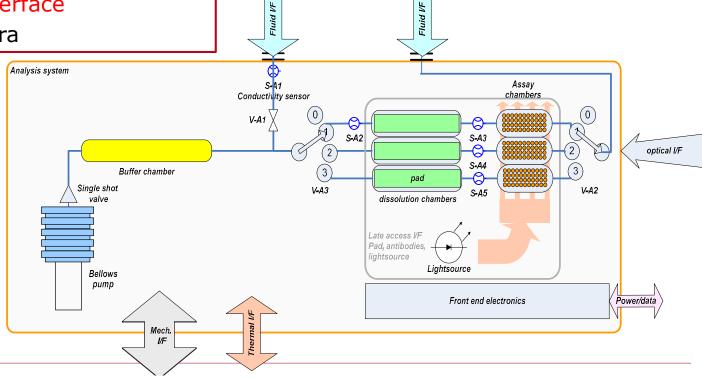
Features

- Capable to detect extant and extinct life
- Multiple molecular detection in parallel
- No special external calibration
- Allows detection of broad molecular size range
- **Sensitivity: From ppb to ppt**
- Results are very easy to analyze
- **Biotechnology industry** supports this technology.

Typical image with one hundred different antibodies 11. Polymers as well as positive and negative control

Present life biomarkers

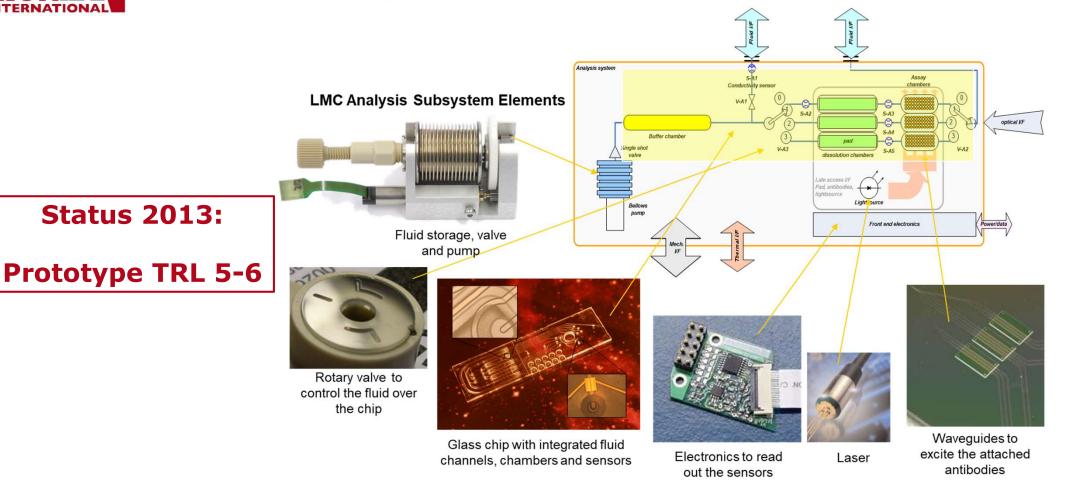
- Whole cells,
- **Cellular debris, biofilms**
- 3. **Biopolymers**


Past life biomarkers

- Aliphatic Hydrocarbons. 1.
- 2. Monocyclic hydrocarbons.
- 3. **Tricyclic hydrocarbons.**
- 4. Aromatic carotenoids.
- Hopanoids and other pentacycic triterpanes.
- 6. PAHs.
- **Lipids Steroids.** 7.
- Porphyrins and maleimides.
- Aminoacids (aa) and 9. nucleotides.
- 10. Nucleotides and other metabolites

LMC Analysis subsystem

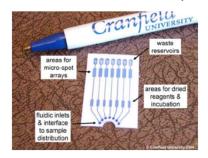
- Based on Laser Induced Fluorescence antibody array
- Hybridly integrated microfluidic and photonic chip
- Miniaturized (chip-based) selector valve and pump
- External laser diode with fiber interface
- Bulky relay optics and CCD camera



Status 2013:

Courtesy of Guus Borst **Dutch Space**

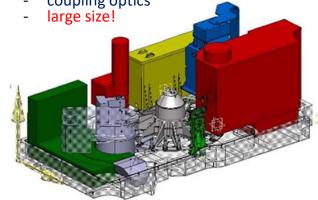
Chips system integration



Micro/Nano/Bio Tech in LMC

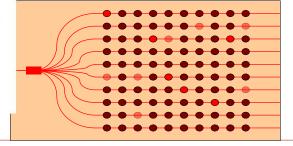
Antibody microarray

- competition assay format (3 chemistries)
- predosed dried chemicals
- single-use
- 4 modules of 10x10 spots


Microfluidics based core system

- based on micro/nano technologies
- micro channels: fluidic connections
- micro chambers: reagents, array, buffer
- micro sensors: electricial conductivity
- planar optical waveguides: excitation of dyes
- micro system integration: compact subsystem
- hybrid selector valve

System integration


- control subsystem
- sample pre-treatment
- lab-on-a-chip
- macrofluidics, pumps and reservoirs
- camera subsystem
 - camera

- Laser Induced Fluorescence (LIF)
- excitation by 'manifold' substrate
- external laser coupled with fiber

ESA-TRP IDOS (2020-23)- Objectives

INTEGRATED LABEL-FREE DETECTION IN OPTOFLUIDICS SYSTEMS FOR SAMPLE ANALYSIS (IDOS)

Partners: Kayser Italia (lead), LioniX International, Surfix Diagnostics

This activity aims at the development and feasibility demonstration of label-free optofluidic refractometric biosensor array with integrated sources and detectors to detect and quantify a selected set of biomarkers.

Other objectives consists of

- Developing Preliminary concepts for future space application,
- Identifying critical issues including technical and safety challenges.

The final output consists of a IDOS breadboard aiming to reach a target TRL 3/4, supporting the Analytical and experimental critical functions and/or the features of an experimental proof-of-concept.

Selected model biomarkers:

Health: - C-reactive protein (CRP) in blood serum;

- Human serum albumin (HSA) in urine;

Life signature: - DNA - synthetic probe/target hybridization couple, 16S related;

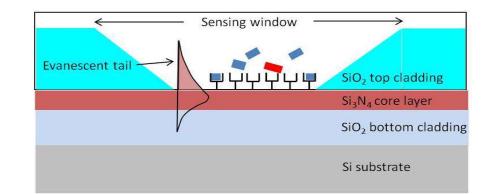
- Benzo(a)pyrene (B(a)P).

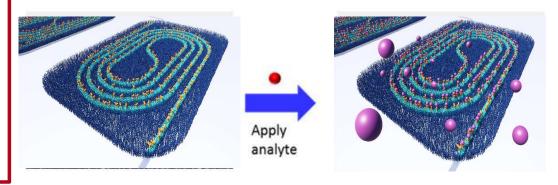
• Sample extraction and preparation by proven laboratory and LMC procedures.

Label-free optofluidic biosensor platforms

Technology platform	Detection limit (RIU)	Integration capability (+/-)	Multiplexing capability (+/-)	Chip processing complexity
3.1 SPR - Surface Plasmon Resonance				
Prism coupled SPR	10 - 10 8	_	_	n/a
Waveguide-based SPR	10 ⁻⁵ – 10 ⁻⁶	+	+	+
Imaging SPR	10 ⁻⁵ – 10 ⁻⁶	-	+	n/a
Localized SPR	10 -5	-	-	n/a
3.2 Optical fiber				
Optical fiber	10 ⁻⁴ - 10 ⁻⁷	-	+/-	n/a
3.3 Auto-fluorescence				
Auto-fluorescence detection	Depends on analyte	+	-	+
3.4 Photonic crystal				
Photonic crystal	10 ⁻³ - 10 ⁻⁵	-	+	n/a
3.5 MRR & Interferometers				
MRR MicroRing Resonator	10 ⁻⁴ - 10 ⁻⁷	+	+	+
MZI Balanced Mach-Zehnder Interferometer	10 ⁻⁶	+	+	-
aMZI Asymmetric Mach-Zehnder Interferometer	10 ⁻⁸	+		+
Michelson interferometer	10 ⁻⁸	-	_	n/a
3.5 Additional techniques				
Plasmonic SPR	10-8 - 10-9	+	+	-
Bimodal interferometer	10 ⁻⁷	-	+	-
Microbubble resonator	0.9 pg/ml	-	-	n/a
Non-optical resonator	100 pg/ml	-	-	n/a

- Study and evaluation of label-free photonic biosensor platforms
- New type interferometric sensor (proprietary)
- Asymmetric Mach-Zehnder Interferometer (aMZI)
 - □ Follow up of LMC development
 - Development funded in several EU projects
 - Promising results initiated ESA-TRP IDOS


Optofluidic biosensors and property summary


"LMC v3.0" - How it works

LMC boosted the development of an integrated photonics based biochip for non-space applications, i.e. medical!

- Evanescent-field, refractometric detection of capturing of analyte molecules on surfacebonded receptors (e.g. antibodies)
- Tiny mass changes detected by the evanescent tail of the light wave in the Si₃N₄ waveguide core (red)

- Nanochemistry based selective sensor surface functionalization
 - Improved bio-assay reproducibility
 - Prevention of (trace) analyte depletion by repelling surrounding, large surface
 - Enhancement of LoD: ~ 10-100x (in theory)

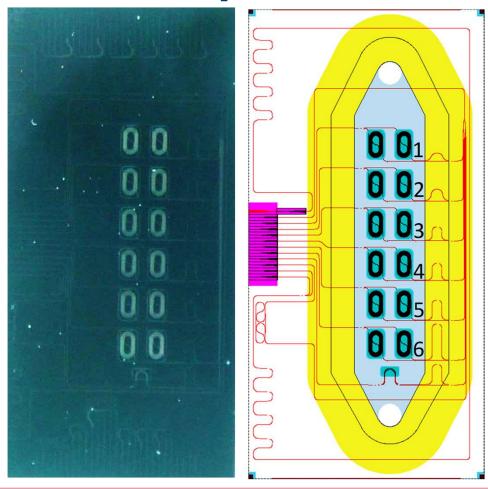


Innovation

Asymmetric Mach-Zehnder Interferometer (aMZI) platform

Ultrasensitive, hybridly integrated and wafer scale manufacturable photonic biosensor array chip module

- Direct analyte capture detection on biochip with hybrid integrated laser and detector:
 - □ *label free*, no derivatization step of fluorescent dyes
 - no fiber interface required
 - no relay optics and CCD camera required
- Combination of innovative aMZI and nanochemistry based selective surface functionalisation
- Fast, ultrasensitive, accurate and multiplex (10 20) detection
- Applications:
 - (Point-of-care) diagnostics, detection and monitoring
 - Drug development
- Applicable in desktop, portable or hand-held system

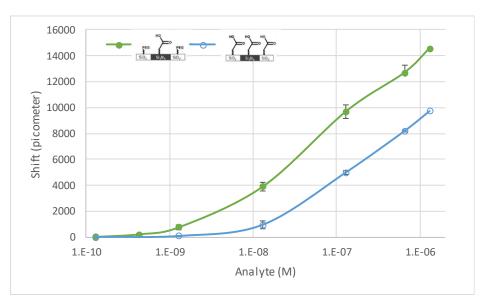


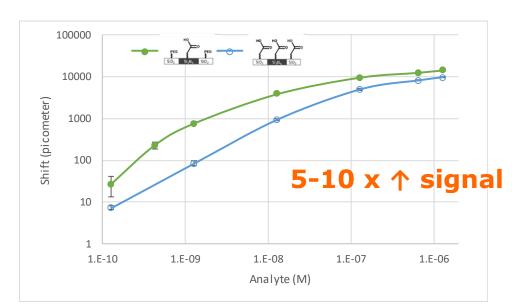
aMZIs with enhanced optical sensitivity

- Sensing path length: 12.5 mm
- Different asymmetry stretches
- Characterization of prototype sensors prove sensitivity enhancement (see table)

Optimized sensitivity of 'State of the Art' MicroRing Resonator: ≈100 nm/RIU

#	Sensitivity (nm/RIU)		
1	9900		
2	4945		
3	3295		
4	2471		
5	1977		
6	988		




Selective functionalization

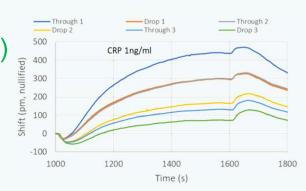
Comparison of selective versus not-selective

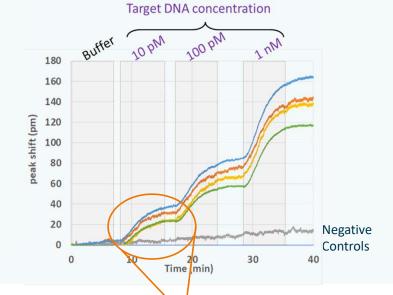
Shift as a function of analyte concentration (Anti-Mouse IgG) II

Single logarithmic

Double logarithmic

Examples applications

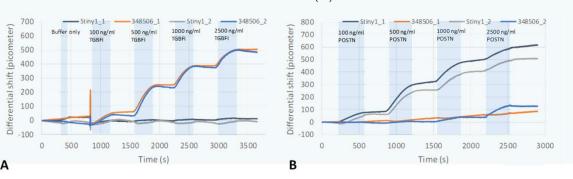



DNA based early cancer detection

- Small fragments of hypermethylated DNA in urine
- Detection of low pM concentrations of small target DNA fragments (5-10 kDa) demonstrated

Blood analysis C-reactive protein (CRP)

- Inflammatory marker in blood
- Clinical range ± 1ng/ml

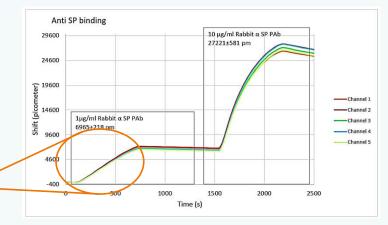


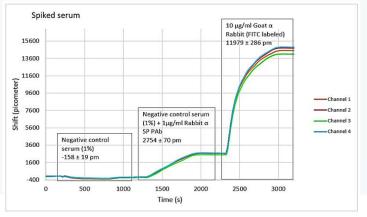
BIOCD_x

Protein based cancer detection

Multiplexed detection of recombinant TGFBI (A) and POSTN (B) demonstrated

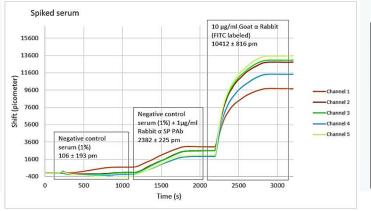
c o n f i d e n t i a l 30-40 pm shift easily measured!!


SARS-COV-2 serology and antigen testing


Serology test development

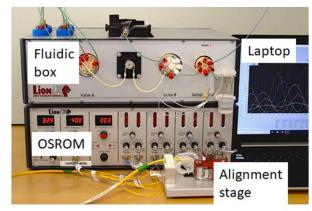
- Detection of AB against SP protein of SARS-COV-2 virus
- Clinical range ± 1µg/ml
- Y2022: Validated in blood serum
 samples! At clinical range almost 7000 pm shift is obtained

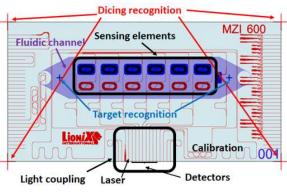
Spiked buffer


Spiked serum (n = 1)

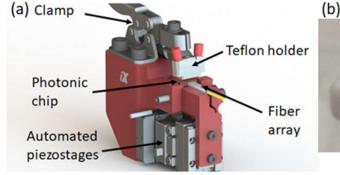
'there is plenty of room at the bottom'

Spiked serum (n = 2)





TRP-IDOS BB-1: Assay development

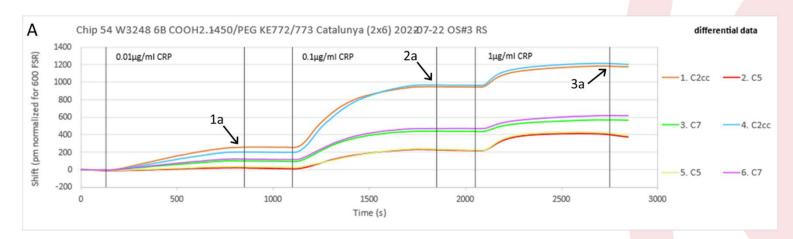

- Flexible experimental system
- Free space fiber light edge coupling of laser and detectors
- 'Naked' biosensor-array chip
- Automated positioning of fiber array
- Demo assays for CRP, HSA, DNA and B(a)P

Experimental system

Schematic of biochip

Biochip mounting/holder

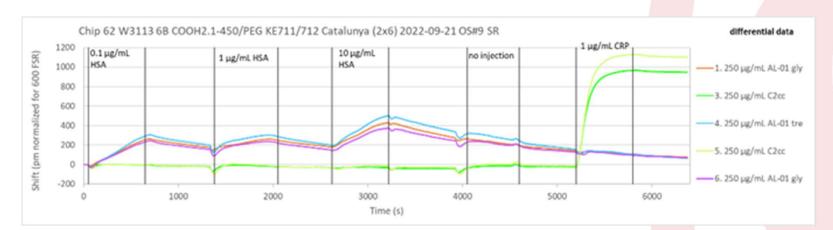
Fiber array holder



C-Reactive Protein (CRP)

- Comparison of different capture antibodies
- Minor effect of matrix (synthetic serum analogue)
- · Optimization of buffer composition

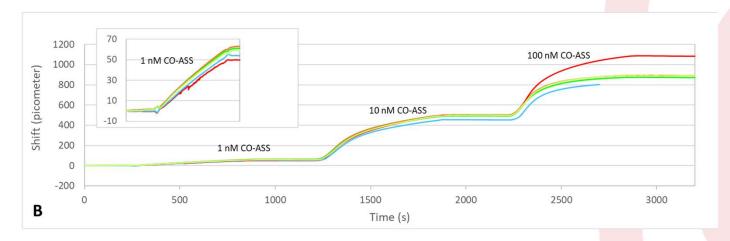
- Successful detection of CRP, LOD <0.01 μg/ml
- Highest sensitivity with antibody C2cc
- Quantitative detection of high concentrations requires further dilution



Human Serum Albumin (HSA)

- Comparison of different immobilization (spotting) conditions
- Minor effect of matrix (synthetic urine)
- Optimization of buffer composition

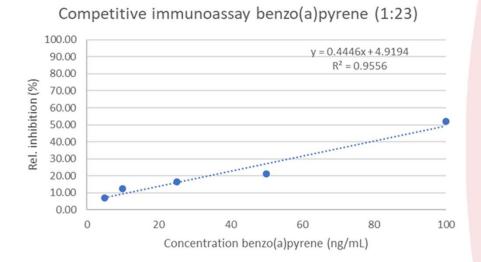
- Successful detection of HSA, LOD <0.01 µg/ml
- No major differences between tested conditions
- Slow signal equilibration, quantitation by analysing slope



Bacterial DNA (Aeromonas)

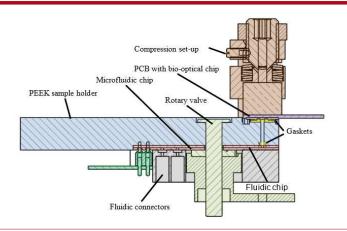
- Direct detection of ssDNA
- Find optimum temperature for highest sensitivity

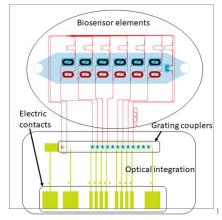
- Successful detection of DNA, LOD ~0.1 nM
- Future work
 - Improve sensitivity (solve issues with high T or alternative approach)
 - Detection of genomic DNA



Benzo(a)Pyrene – B(a)P

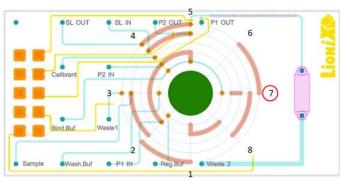
Synthesis and comparison of different B(a)P-protein conjugates

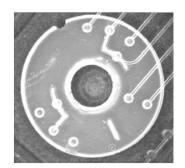



- Successful detection of B(a)P, LOD <5 ng/ml
- Low solubility of B(a)P in water is challenging
 - Organic solvents are not compatible with proteins used in assay
 - Investigate alternative receptors, e.g. aptamers or MIPs?

TRP-IDOS BB-2: Hybrid integration demo

- Hybrid integrated laser and detector on biochip
- Bragg grating couplers on biochip
- Electrical interfacing on PCB by wirebonding
- Microfluidic (uF) sampling and selector valve in bonded sandwich chip module (LMC heritage)
- Demo assay: spiked samples with NaCl


Hybrid biochip

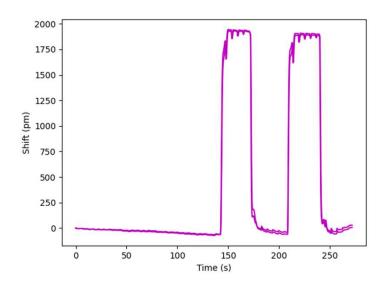

Biochip on PCB

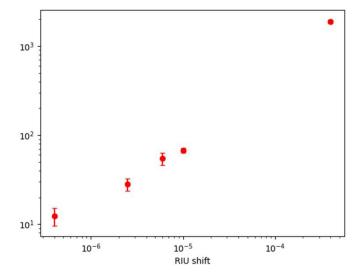
uF sandwich chip

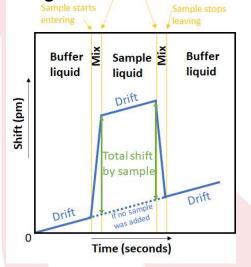
uF selector valve

Teflon rotary slider

BB2 development






Validation using salt concentrations

Technology demonstrator: refractive index sensor

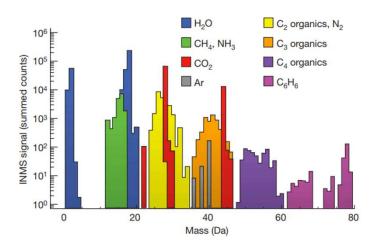
< 10⁻⁶ RIU can be easily measured Improvements: application of (proprietary) tunable laser and *balanced* sensing

Development activities and challenges

- LMC science and technology as starting point
- System concept development and science case for space application
 - Science cases TU Delft Vermeersen/Cazaux (present participation in JUICE launched April 2023)
 - Sample extraction and preparation depending on mission objective
- Receptor technologies for life biomarkers
 - Antibodies state-of-the art, not ideal (lack of robustness, less appropriate for small biosignature molecule detection
 - Alternatives:
 - Aptamers (DNA constructs)
 - MIPs (Molecular Imprint Polymer)
- Next step: From partly to fully integrated analysis breadboard
 - Complete breadboard system for single experiment (GSTP?)

Science Case Icy Moons

- Enceladus, icy moon orbiting around Saturn, has a liquid ocean under its icy crust
- Water from the sub-surface ocean escapes through Geysers which have been visited by the Cassini mission *Porco 2014, Thomas 2016*
- The Cassini mission detected complex molecules in the plumes, reflecting the composition of the ocean Postberg 2018, Khawaja et al. 2019



Science Case Icy Moons

- Simple molecules have been observed H2O, CO2, NH3, etc. with a mass spectrometer observing low masses (INMS).
- However, the mass spectrometer's resolution did not allow many identifications of molecules Waite 2009
- Fragments of large molecules have been observed and could be originating from large organic molecules
- Possible candidates such as C₁₀₀H₇₀O₂₂N₃S₇ Postberg 2018

Future

Planetary Exploration plan

- Objective: participation in future ESA Icy Moon mission (tbd)
- Activities in NL
 - Running research on Enceladus NL (a.o. TU Delft)
 - > User community: Dutch Platform Planetary Sciences (NPP), Origins Center
- Collaboration in ESA framework
 - Science, technologies

Other mission/application options

- ESA Extraterrestrial Sample Infrastructure (EETSI)
- Moon missions

• Funding sources

- NL: NWO GO, NSO Science Program
- ESA GSTP, follow up of TRP-IDOS
- ESA Science Program