Space Metrology: Laser Stability for the LISA Mission and 3D imaging LiDAR

EPIC Meeting on Photonics for Space: Opening New Horizons at Exail

Christophe Pache, Group Leader, CSEM <u>christophe.pache@csem.ch</u>

CSem

CSEM AT A GLANCE

We are a public-private, non-profit, Swiss technology innovation center.

We enable competitiveness through innovation by developing and transferring world-class technologies to industry.

COMBINING EXPERTISE, PASSION, AND DIVERSITY FOR SUCCESS

NATIONALITIES

35%

28%

WE SERVE INDUSTRY NEEDS WITH A FOCUS ON DEEP TECH

WE FOCUS ON THREE RESEARCH PRIORITIES

6

" CSem

Astrocombs

(extreme precision) ASTRONOMICAL SPECTROSCOPY

sample questions of a concerned astronomer:

is this constant TRULY constant ?

is there a planet ? how massive it is ? is it in the habitable zone ? Earth 2.0 ??? what is going on with the Universe ? what is this dark stuff ?

2 axes: echelle grating & cross-disperser (prisms)

WAVELENGTH CALIBRATION

known spectrum

→ wavelength (pixel)

Astrocomb on GIANO-B spectrograph

Prototype demonstration at La Palma (previous project)

11

E. Obrzud, M. Rainer, A. Harutyunyan, B. Chazelas, M. Cecconi, A. Ghedina, E. Molinari, S. Kundermann, S. Lecomte, F. Pepe, F. Wildi, F. Bouchy, T. Herr, "Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb," Opt. Express **26**, 34830-34841 (2018); https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-34830

ASTROCOMB FOR NIRPS

•••

ASTROCOMB FOR NIRPS

accuracy: 10⁻¹² 24h spectral stability: ±8% ~7000 calibration lines

ASTROCOMB FOR NIRPS aka Astrobox

- electro-optic modulation LFC
- 15 GHz line spacing
- 17 GHz tunability
- min. spectral coverage 1150 1850nm

Ultra stable laser and their metrology : LISA mission

LISA mission: Laser Interferometer Space Antenna Gravitational waves detected in space

Ground-based detection : LIGO

- First detection (Sep.14 2015)
- Detection band [10 Hz; 10kHz]

Space-based detection : LISA mission

- Detection band [0.1 mHz; 1Hz]
- Launch, planned in 2034
- Space compatible laser system
- > High performance requirement of laser
 - 2W at 1064nm

* CSem

- Ultra-low Amplitude noise
- Ultra-low frequency noise
- Ultra-low sideband phase noise

Ultra stable laser and their metrology

Full laser system (space compatible development)

- BB development (2017-2018)
- MOPA architecture
- Ultra low-frequency noise laser stabilized on cavity

Ultra stable laser and their metrology

Laser system metrology development

- Dedicated laboratory with high stability (mechanic + thermic)
- Frequency noise measurement from 20 µHz to 10Mhz

Photodiode metrology: TRUTHS mission

Truths mission :

- Absolute radiometer
- Hyperspectral imaging spectrometer
- On-board calibration system

CSEM contribution

- Performance measurement of photodiode (for calibration system)
- Environmental test of the photodiode
- More than 100 PD testes before and after environmental test

20

" csem

Development and automatization of two test benches

CSem

InGaAs performance setup 21)

Dark current setup

22

" CSem

Vibration test (inhouse)

" CSem

Thermal test and thermal cycling (inhouse)

Immination screen
controller
TAs and dataloger

ation
Immination screen
Immination screen
TAs power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power

ation
Immination screen
Immination screen
Immination screen
Tas power</td

24

Vacuum pump

Lifetime test under vacuum (inhouse)

Shock test (inhouse)

CSEM

System's modelling & identification

from mechanics to control

In-house μ -Vibration characterisation facility

Features

- Multicomponent dynamometer (6DoF).
- mN resolution, 1st eigenmode > 2kHz.
- Frequency range: 5 1000 Hz.
- Decoupled from environment.

Applications

CSem

- µ-vib characterization for active components.
- Spectral analysis of exported forces.
- Sensor characterization with injected vibrations.

430mm x 430mm x 81mm

In-house μ -Vibration characterisation facility

Features

- Miniature modal shaker as excitation.
- Wide range of accelerometers: from µg resolution to 5 g amplitude.
- Frequency range: 0.1 2000 Hz.
- Decoupled from environment.

Applications

" CSem

- Performance assessment of sensitive equipment under µ-vibration.
- Phase noise or frequency stability analysis under µ-vibration.

Flash lidar

CSEM's developments & positioning

. "CSem

.

AIRSWIN

Flash lidar

CSEM's developments & positioning

Flash lidar

Current specifications

Specifications	AIRSWIM	RemoveDebris
Application	Bathymetry	Space (rendezvous)
Architecture	d-TOF	i-TOF
Laser	Pulsed, Class 4, λ = 532 nm	Laser diode, Class 4, λ = 808 nm, cw mod.
Sensor resolution	128 x 128 <u>2023</u> : 256 x 256 or 512 x 512	120 x 160
Precision	< 5 cm at 100 m in air	< 10 cm at 60 m
FOV [°]	5 - 20	20
Size [cm ³]	20 x 17 x 19	10 x 10 x 15
Weight [kg]	6.5	< 2
Power consumption [W]	< 55	15
Frame rate [Hz]	> 4 (target: 10)	20

AIRSWIM

(31)

" CSem

Space Applications

Debris removal missions – New Space

RemoveDEBRIS

- Launch with SpaceX in April 2018
- NET and VBN in-orbit experiments
- Mission end April 2019

VBN experiment data

• ADRIOS

- Launch: 2026
- Further miniaturisation
- Embedded processing, i.e. system-on-chip :: CSEM

Confirmed potential for **future commercialisation** (in-orbit maneuvers)

Bathymetric Applications

Demonstration from unmanned surface vehicle (USV)

" CSem

Conclusions and outlook

- Metrology for laser sources & optical systems
- System-level testing: **space environment** & micro-vibrations
- Flash lidar

> Push the performances to new paradigms

Thank you for your attention!

Christophe Pache Group Leader, Sensing & Control christophe.pache@csem.ch T +41 32 720 59 02 M +41 79 794 29 16

www.csem.ch

Outlook: FMCW LiDAR

- Point-wise acquisition: 10 30 µm beam dia.
- Measuring rate in the kHz range
- Axial precision: < 50 μm

Frequency noise

40

Measurement not limited by the reference setup

" CSem

System modelling, identification and verification

1 - Characterisation

- Disturbances injection and measurements
- Definition of optimal sensors locations

" CSem

2 - Analysis and correlation

- Measurements vs Finite Element Model
- Model adaptation & correlation

3 - Verification

- Performances assessment
- Performances improvement (control-loop re-tuning)