# 

## The Next Generation Quantum Sensing Platform

Devang Naik, Lead scientist, BTU QuTech EPIC, October 12 (Munich, Germany)





CONFIDENTIAL



## GLOphotonics

### CONFIDENTIAL

## Quantum Resources are remarkably Fragile !!!



need to be isolated from all sources of environmental noise:

• high vacuum systems: <  $10^{-9}$  millibar

## Quantum Resources are remarkably Fragile !!!



### need to be isolated from all sources of environmental noise:

- high vacuum systems: <  $10^{-9}$  millibar
- isolate from acoustic noise
- temperature and humidity control environments

ultra-cold temperatures - reduces effect of thermal motion

need to be isolated from all sources of environmental noise:

- high vacuum systems: <  $10^{-9}$  millibar
- isolate from acoustic noise
- temperature and humidity control environments

# Quantum Resources are remarkably Fragile !!! need for high atom-light interactions to create and control quantum resources



 ultra-cold temperatures - reduces effect of thermal motion cavity Enhancement



need to be isolated from all sources of environmental noise:

- high vacuum systems: <  $10^{-9}$  millibar
- isolate from acoustic noise
- temperature and humidity control environments

# Quantum Resources are remarkably Fragile !!! need for high atom-light interactions to create and control quantum resources



## Quantum Resources are remarkably Fragile !!! need for high atom-light interactions to create and control quantum resources ultra-cold temperatures - reduces effect of thermal motion

- cavity Enhancement
- multi-pass geometries

need to be isolated from all sources of environmental noise:

7 PD2

• high vacuum systems: <  $10^{-9}$  millibar

DFB EDFL

- isolate from acoustic noise
- temperature and humidity control environments







Orders of Magnitude Larger Atom-Light Interactions in a compact, simple platform with good vacuum - volume reduced from m<sup>3</sup> to 100s um<sup>3</sup> !!! **GLOphotonics** 

CONFIDENTIAL



## Minituarizing Quantum Technologies in Free Space

Atom-Light Couplin Interaction Environ Standard Free Space Limited by Light 10 Technology Dispersion

NOVERPACE.

| ng to<br>nment | Spectral<br>Range | Vacuum (mBarr)    | Compactness           |  |
|----------------|-------------------|-------------------|-----------------------|--|
| -3             | visible           | 10 <sup>-10</sup> | <i>m</i> <sup>3</sup> |  |





## The Hollow Core Family





Hollow-core (5-150 µm)



The Hollow-Core PCF & Photonic MicroCelF\* company

Thickness : 2µm-100nm

Microstructured **Cladding (Air/Silica)** 

## **Total Internal Reflection**



doped glass (n<sub>dg</sub>) glass (n<sub>g</sub>)

Air (n<sub>air</sub>)

**n**<sub>eff</sub>





### **Solid-Core Fiber**

## Photonic Bandgap Fiber





doped glass (n<sub>dg</sub>) glass (n<sub>g</sub>)

Air (n<sub>air</sub>)

**n**<sub>eff</sub>





The Hollow-Core PCF & Photonic MicroCelF\* company

GLO



### Photonic bandgap guiding HCPCF

## Inhibited Coupling





J. von Neumann





The Hollow-Core PCF & Photonic MicroCelF\* company

GLO



E.P. Wigner

### Über merkwürdige diskrete Eigenwerte

J. von Neumann and E. P. Wigner

Physikalische Zeitschrift 30, 465-467 (1929)

## Bounds States in the Continuum





## Inhibited Coupling



doped glass (n<sub>dg</sub>) glass (n<sub>g</sub>)

Air (n<sub>air</sub>)

 $n_{eff}$ 





The Hollow-Core PCF & Photonic MicroCelF\* company

GLO



### kwürdige diskrete Eigenwerte

on Neumann and E. P. Wigner

kalische Zeitschrift 30, 465-467 (1929)

## Bounds States in the Continuum





GI O



### kwürdige diskrete Eigenwerte

kalische Zeitschrift 30, 465-467 (1929)



GI O



GI O



### kwürdige diskrete Eigenwerte

kalische Zeitschrift 30, 465-467 (1929)











| Coupling to<br>Environment | Spectral<br>Range                   | Vacuum (mBarr)    | Compactne             |
|----------------------------|-------------------------------------|-------------------|-----------------------|
| 10-3                       | visible                             | 10 <sup>-10</sup> | <i>m</i> <sup>3</sup> |
| 10 <sup>-2</sup>           | 70 THz<br>bandwidth above<br>800 nm | 10 <sup>-9</sup>  | $\mu m^3$             |
| 10 <sup>-6</sup>           | extreme UV to<br>IR                 | 10 <sup>-9</sup>  | $\mu m^3$             |

### ess





GLOph

## Bound States in the Co





Limited by Light

Only Limited by fiber length

Only limited by fiber length





Standard Free Space Technology Photonic Bandgap

Fiber

GLO

|                            |                                     | (a)               |                 |
|----------------------------|-------------------------------------|-------------------|-----------------|
| Coupling to<br>Environment | Spectral<br>Range                   | /acuum (mBarr)    | Compactne       |
| 10 <sup>-3</sup>           | visible                             | 10 <sup>-10</sup> | $m^3$           |
| 10 <sup>-2</sup>           | 70 THz<br>bandwidth above<br>800 nm | 10 <sup>-9</sup>  | μm <sup>3</sup> |
| 10-6                       | extreme UV to<br>IR                 | 10 <sup>-9</sup>  | $\mu m^3$       |

## Bound States in the Co





Atom-Light Interaction

Limited by Light Dispersion

Only Limited by fiber length

Only limited by fiber length



Standard Free Space

Photonic Bandgap

GLOphd

GLO

Fiber

Technology

|                           |                                     | (a)               |                 |
|---------------------------|-------------------------------------|-------------------|-----------------|
| Coupling to<br>Environmer | o Spectral<br>It Range              | Vacuum (mBarr)    | Compactne       |
| 10 <sup>-3</sup>          | visible                             | 10 <sup>-10</sup> | $m^3$           |
| 10 <sup>-2</sup>          | 70 THz<br>bandwidth above<br>800 nm | 10 <sup>-9</sup>  | μm <sup>3</sup> |
| 10 <sup>-6</sup>          | extreme UV to<br>IR                 | 10 <sup>-9</sup>  | $\mu m^3$       |



iness

## Bound States in the Co



Atom-Light Interaction

Limited by Light Dispersion

Only Limited by fiber length

Only limited by fiber length



Standard Free Space Technology **Photonic Bandgap** 

Fiber

GLO

## Large Decoupling of Light to Surrounding !!!

## $10^{-6}$ wavefunction overlap between core and cladding/environment

### Decouples Atom-Light interactions from environmental noise

|                           |                                     | (a)               |                       |
|---------------------------|-------------------------------------|-------------------|-----------------------|
| Coupling to<br>Environmer | s Spectral<br>Range                 | Vacuum (mBarr)    | Compactne             |
| 10-3                      | visible                             | 10 <sup>-10</sup> | <i>m</i> <sup>3</sup> |
| 10 <sup>-2</sup>          | 70 THz<br>bandwidth above<br>800 nm | 10 <sup>-9</sup>  | $\mu m^3$             |
| 10 <sup>-6</sup>          | extreme UV to<br>IR                 | 10 <sup>-9</sup>  | $\mu m^3$             |



## Inhibited Coupling



## Up to Million Fold improvement in Atom-Light Coupling !!!



### Interaction

Limited by Light Dispersion

Only Limited by fiber length

Only limited by fiber length

Alternative to Cavity Enhancement for Quantum Sensing



| Environment      | Range                               | vacuum (mbarry    | compacine             |
|------------------|-------------------------------------|-------------------|-----------------------|
| 10 <sup>-3</sup> | visible                             | 10 <sup>-10</sup> | <i>m</i> <sup>3</sup> |
| 10 <sup>-2</sup> | 70 THz<br>bandwidth above<br>800 nm | 10 <sup>-9</sup>  | $\mu m^3$             |
| 10 <sup>-6</sup> | extreme UV to<br>IR                 | 10 <sup>-9</sup>  | $\mu m^3$             |





Liquid in core shifts Transmission Profile nhancement for

## High Light-Molecule Interaction in Liquid State:

- Urine Analysis
- Blood Analysis
- Aqueous Quantum Sensing







Warm, Cold, and Ultra-Cold Alkali Atom PMC











- Warm, Cold, and Ultra-Cold Alkali Atom PMC
- a dense MOT of <sup>87</sup>Rb atoms near the entrance of a hollow-core fiber
  - 10<sup>9</sup> atoms/s at 10 microKelvin temperature
  - (planned) hermetic sealing inside vacuum













- Warm, Cold, and Ultra-Cold Alkali Atom PMC
- a dense MOT of <sup>87</sup>Rb atoms near the entrance of a hollow-core fiber
  - 10<sup>9</sup> atoms/s at 10 microKelvin temperature
  - (planned) hermetic sealing inside vacuum

Quantum Memories (10  $\mu$ s - 1 ms) + Transmission in One Platform











Trapped atom memory

## All-Fibered 780 nm - 1560 nm Entangled Photon Source

Photon detector TwinLas TwinLas Photon pair Photon pair source source Photon detector 2

## GLOphotonics

Spectral hole burnin



Thinkas

C C Co

t = 70 ms

t = 110 ms



## of a hollow-core fiber





## Paving the way for Cold-Atom Photonic Microcells





### Generation of non-classical light



CRYST<sup>3</sup> European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 964531













# I2 & C2H2 PMC



### FREQUENCY REFERENCES: I2 & C2H2 PMC









activities in 2013









## Merci Beacoup

- A French start-up based in Limoges. Incubation in Bath (2008). Transfer to and re-incubation in Limoges (July 2011). Trading
- ~20 employees. 80% in R&D, 12 PhD+
- 150 m² clean room (ISO-07)
  - 2 drawing fiber towers
- Stratetic partenership with XLIM / GPPMM
  - Development & supply of photonic components, modules and/or systems based on a proprietary Technology\*.

CONFIDENTIAL













## **Quantum Technology** Unit









## A Novel Quantum Sensing Architecture



1. F. Benabid, L. Vincetti, F. Giovanardi, "ELECTROMAGNETIC WAVEGUIDE," Patent 20220244452, July 30, 2020.

2. F. Benabid, "Hollow-core photonic crystal fibre," Patent 8306379, Nov. 6, 2012.

3. F. Benabid, "Optical assembly of a hollow core fibre gas cell spliced to fibre ends and methods of its production," Patent 8079763, Dec. 20, 2011.



- Novel Quantum Sensing Architecture spanning decades of spatial scale:
- 1) integrated optics,
- 2) integrated microwave delivery system,
- 3) integrated detection









## Our approach: use Quantum Sensors to measure the imperceptibly small magnetic response of biological tissues



Recent advances are revealing the bio-magnetic nature of the human body



## However the signals are very weak ...



# 9 order of magnitude reduction in noise!!!!!

 $(\overline{H}z)$  $T/\sqrt{T}$ magnetic field

![](_page_41_Figure_2.jpeg)

## Navigating the Body with Magnetic Fields

![](_page_42_Figure_1.jpeg)

 $\mathbf{B}_{sec}(\omega) = \{Q\omega\mu_0[\omega\varepsilon_0(\varepsilon_r - 1) - i\boldsymbol{\sigma}] + P(\mu_r - 1)\}\mathbf{B}_{ext}(\omega)$ 

### Going Beyond Standard Non-Invasive Imaging

Our Quantum Sensors can probe vital Dielectric Properties of biological tissues: opening the door to a revolutionary new non-invasive, tissue-specific, structural imaging!!!

![](_page_42_Picture_7.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

## Our Method can penetrate skeleton and skull !!!

![](_page_44_Figure_2.jpeg)

![](_page_44_Figure_3.jpeg)

## Dielectric Properties can revel abnormal Tissue properties !!!

![](_page_45_Figure_1.jpeg)

Iron displays high conductivity at high frequencies, allowing our method to detect the development of all types of tumors

![](_page_45_Picture_4.jpeg)

## Dielectric Properties can revel abnormal Tissue properties !!!

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_3.jpeg)

frequency [Hz] our conductivity resolution frequency [Hz]

A Single Imaging Modality for Cancer that is Non-Invasive !!!

![](_page_46_Picture_6.jpeg)

## State of the Art

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_2.jpeg)

### 1) High Sensitivity

- 2) Ambient Temperature Operation
- 3) full Vector-Magnetometry Capabilities
- 4) large Dynamic Range
- 5) Absolute B field abilities (no calibration errors)
- 6) small, compact footprint (mm spatial resolution)

### CONFIDENTIAL

![](_page_47_Picture_11.jpeg)