

Integrated biosensing from the visible to the IR using low loss silicon nitride

27.09.23 - EPIC Technology Meeting on Photonics for Bio and Life Science Applications

Anton Vasiliev, PhD anv@ligentec.com

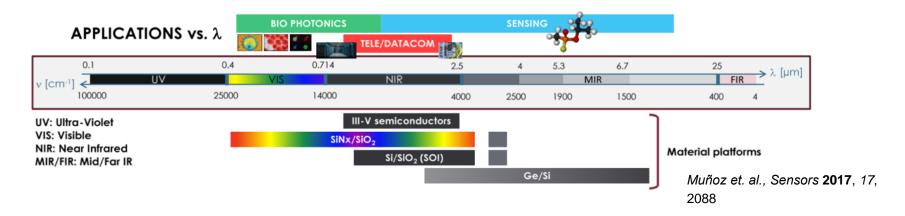
Challenges of Photonic Integrated Circuits (PICs)

ADVANTAGES

Size: 100x smaller

Weight: 100x lighter

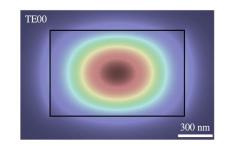
Power: 1/10th of energy consumption


Cost: $1/100^{th}$ of cost

CHALLENGES

- □ propagation losses
- coupling losses
- □ long & expensive R&D cycles
- □ no one fits all solution

Benefits of Silicon Nitride for (Bio)Sensing

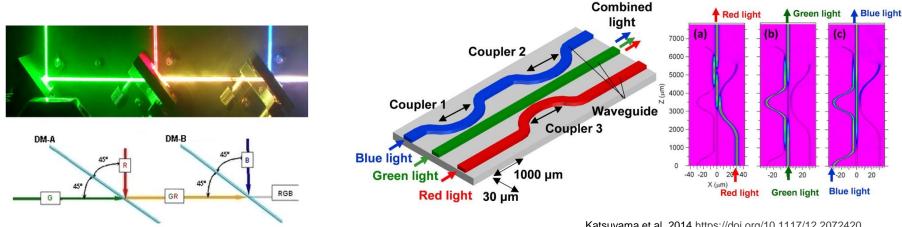


Low propagation loss: **0.01** to 0.05 dB/cm Reference Silicon: 2.5 to 1 dB/cm

Large transparency window: 400 – 4'000 nm

Reference Silicon: 1'100 - 4'000 nm

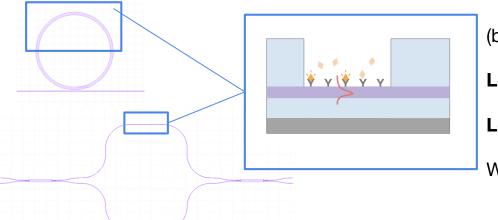
High optical power: > 5 W per waveguide (10 9 W/cm²)



Application - simple example of a PIC

Beam combiner in the Visible

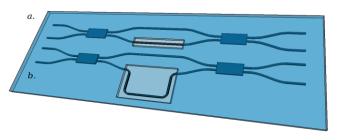
Replacement of bulky free space optics with integrated solution


Katsuyama et al. 2014 https://doi.org/10.1117/12.2072420

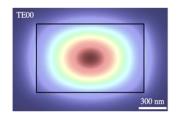
Key system parameters: propagation loss, IO coupling loss, Extinction Ratio

Applications - BioSensing chip

Evanescent field sensing on exposed SiN waveguides

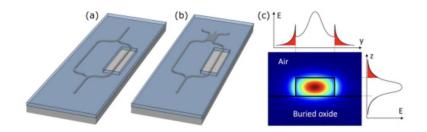


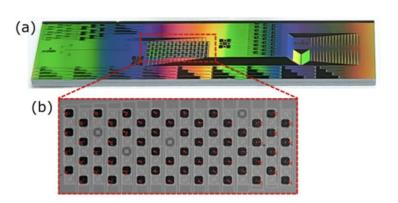
(bio)marker receptors → **Selectivity**

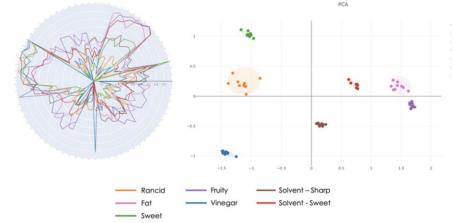

Low propagation loss interferometer → **Sensitivity**

Low I/O coupling loss \rightarrow SNR

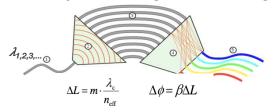
Wavelength "fingerprint" not used, no complex tuning



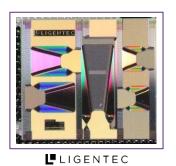

Applications - BioSensing device


Evanescent field sensing on exposed SiN waveguides

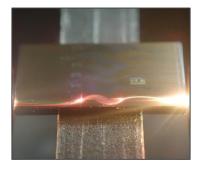
e-nose for odor analytics



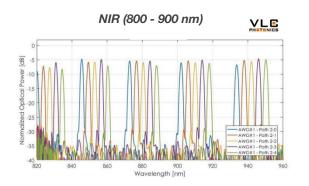
L. Laplatine et al., Optics Express 30 (19) (2022) https://www.photonixfab.eu/ https://aryballe.com/

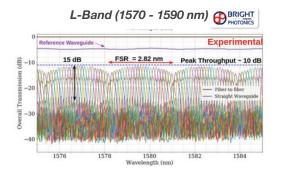


Dispersive on-chip spectrometer from VIS-NIR


Arrayed Waveguide Grating (AWG)

Visible

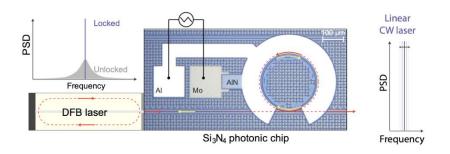



broadband source + AWG→ **Selectivity**

Low propagation loss → Low AWG XT

Low I/O coupling loss → SNR

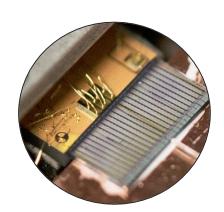
Wavelength "fingerprint" probed

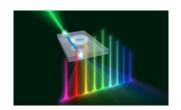


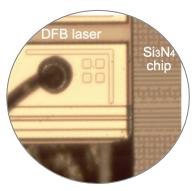
Applications - Advanced frequency comb source

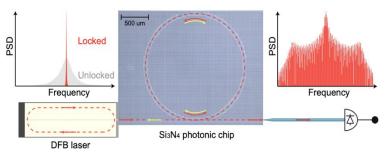
LIGENTEC

Octave spanning frequency combs


Low loss SiN enables advanced nonlinear devices




or

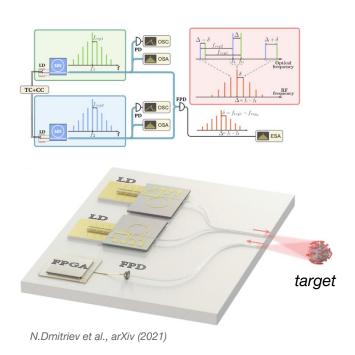

Linewidth: <50Hz SMSR: -50dB

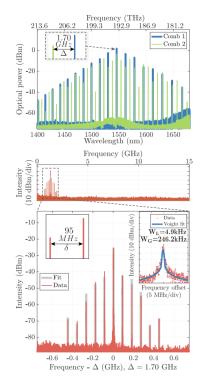
Max power: ~1.5mW Locking range: 2GHz

Applications - dual comb spectroscopy device

Dual-comb Spectroscopy enabled by low loss SiN

Fast and precise probing of the full "fingerprint" spectrum


Dual-comb spectroscopy allows direct optical-to-electrical mapping and read-out

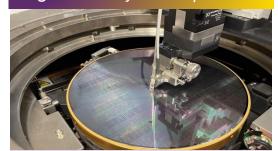

Shown implementation:

Laser Diode + SiN microresonators

OFC via Self injection-locking

Beatnote in RF domain

How can Ligentec help scale your biosensing business? Seamless journey from Idea to Volumes


Entry: R&D & Prototyping Open access, low barrier

Fast prototyping

- Established technology
- Fixed layer stack
- Extensive PDK
- Regular MPW runs
- Design / layout support
- Characterization
- Packaging support

Optimize: Development High flexibility & competence

Custom PIC Developments

- Engineering studies
- Layer stack adaptation

Custom Integrations

- LNOI
- PD integration
- Polymers, BTO, AIN, III-V,...

Manufacturing: Supply Quality and guarantee

Pilot Fabrication

Pilot and niche quantities

Volume Fabrication

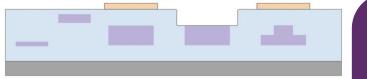
- Large volumes
- High-capacity wafer fab
- Fully automated testing
- Automotive quality system

Low Loss SiN - Platform Overview

The Basics

- ✓ Low Loss
- ✓ Small Footprint
- ✓ High Power

In what area (basic performance, design, active components, IO) lies your greatest challenge today?


Full Creativity (PDK)

- ✓ Couplers
- ✓ Mux / DeMux
- ✓ MZIs / DLIs
- Resonators
- ✓ Polarization co

Actives

- Electrical Tuning
 - Modulators
- Lasers
- Detectors

World Connections

- Edge / Grating Coupler
- ✓ Spot Size Converter
- ✓ Arbitrary Die Shape
- ✓ Bond pads
- Cladding opening for sensing

