

Innec

NEXT GENERATION LIGHT SWITCHES FOR OPTICAL QUANTUM TECHNOLOGIES

Chrsitian.Haffner@imec.be

Principal Member of Technical Staff

IMEC's vertical value chain – a unique cross-road

umec

IMEC: INVESTMENT ~3 B€

From Free space optics to integrated photonics

10s Qubits

Scaling Photonics: one effort among the 24B\$

Gaussian boson sampling

H. Zhong, et al, "Quantum computational advantage using photons", Science, 2020.

...losses need to be mastered ... coherence maintained

	Fiber/FS	PIC
Loss	$\leq dB/km$	$\leq dB/m$

umec

... Photon control

100 mode Interferometer $(\delta L_{paths} \leq few \ \mu m)$

100 phase lockers

Excursion: Photonic Qubit Encoding

 $|\varphi\rangle = \alpha |0\rangle + \beta |1\rangle$

MZI building block for quantum information processing

- Chip-based quantum communications ^[1]
- Gate-based quantum information processing ^[2]
- Simulation of molecular dynamics^[3]

[1] P. Sibson et al. Integrated silicon photonics for high-speed quantum key distribution. Optica (2017).

[2] J. Carolan et al. Universal linear optics Science (2015).

[3]E. Sparrow Simulating the vibrational quantum dynamics of molecules using photonic. Presenter Christian Haffner - Christian. Haffner@imec.be

Imec photonics platforms

Telecom/data focused Industry-standard Visible application Biophotonics, sensing, metrology, ...

umec

Status-quo is not enough

Integrated photonic quantum technologies

Carolan J. et al., Universal Linear Optics, Science (2015)

Silica on Silicon WG

Arrazola, Quantum circuits with many photons on a programmable nanophotonic chip Nature (2021)

[1] Quix - 20-Mode Universal Quantum Photonic Processor arXiv:2203.01801v4 (2023) Wang, J. Integrated photonic quantum technologies Nature Photonics (2019) [2]Chi. Y et al. A programmable qudit-based quantum processor – Nature floo 22 senter Christian Haffner – Christian.Haffner@imec.be

ໍເາາາຍັ

Electro-optical engines for quantum

Effect	Δn _{eff}	Loss	Speed	Dissipation [W]
Thermo-optic (Si)	$\frac{dn_{Si}}{dT} \propto 10^{-4} \ K^{-1} \rightarrow L_{\pi} \approx 250 \mu \mathrm{m}$	$\leq 0.05 dB$	≫ 1µs	10s of mW

[1] Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review (2022)

[2] Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform, Optics Express (2019) Public: Presenter Christian Haffner – <u>Christian.Haffner@imec.be</u>

[2] Johnson et al., Perturbation theory for Maxwell's equations with shifting material boundaries. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2002).

Electro-optical engines for quantum

Effect	Δn _{eff}	Loss	Speed	Dissipation [W]
Thermo-optic (Si)	$10^{-4}K^{-1} \xrightarrow{30K} L_{\pi} \approx 250 \mu \mathrm{m}$	$\leq 0.05 dB^*$	$\gg 1 \mu s$	10s of mW
Opto-electro-mechanics	$2.5 \cdot \Delta \Gamma^{-1} \xrightarrow{1\%} L_{\pi} \approx 30 \mu \mathrm{m}$	~ 0.33dB	~ 1µs	$\geq 100s$ of nW

Public: Presenter Christian Haffner – Christian.Haffner@imec.be

On-chip teleportation with active feed-forward

[1] Elsharri et al., Hybrid integrated quantum photonic circuits, Nature Photonicsp?esenter Christian Haffner – Christian.Haffner@imec.be

ເຫາຍດ

1μm

ເmec

Electro-optical engines for quantum

Effect	Δn _{eff}	Loss	Speed	Dissipation [W]
Thermo-optic (Si)	$10^{-4}K^{-1} \xrightarrow{30K} L_{\pi} \approx 250 \mu \mathrm{m}$	$\leq 0.05 dB^*$	$\gg 1 \mu s$	10s of mW
Opto-electro-mechanics	$2.5 \cdot \Delta \Gamma^{-1} \xrightarrow{1\%} L_{\pi} \approx 30 \mu \mathrm{m}$	< 0.1dB*	10s of ns*	N. A.
Electro-optics	$n^3 r \cdot E_{RF} \rightarrow L_{\pi} > 100 \mu m^*$	< 1dB*	Sub-ns	N. A.

Key messages $(L_{prop} \gg V_{\pi}L)$: I) Plasmonics & Quantum = dead end II) Silicon FCD to lossy III) Photonic- $\chi^{(2)}$ might do it $U_{RF} \approx 5..10$ GHz Electrode RF-Ficht

Haffner et al. Nano-opto-electro-mechanical switches operated at CMOS-level voltage, Science 2019 Public: P

Public: Presenter Christian Haffner – Christian.Haffner@imec.be