

Scalable Quantum Computing based on market-leading photonics technology

Dr. Caterina Taballione

4.0 K 23 %

4.0 K 23 % 800 M

> EPIC - Industrial Quantum Photonics Technology October 12th , 2023

## OUR MISSION

## Build Europe's quantum computer.



1031 63 631 631 63

100

63 63

63

000100000

EJ 1

63 69 611 68

63 631

63

-

631

101 0 10

[]

102 02

1103103





Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical.

**Richard P. Feynman** The Nobel Prize in Physics 1965



## **Gate-Based Quantum Computing**



Lot of technical knowhow needed to preserve the coherence of the qubits and do error correction!

## **Measurement-Based Quantum Computing**



One way quantum computing is very resource efficient, establishing the cluster state is challenging.



Source: IBM



### Scalable

Modularity (coupling of processors) enables high scalability



#### **Mature basis**

- Leverage on existing telecoms technology
- Works at room temperature
- Strong industry buy-in

### Affordable

- Cost-effective infrastructure
- Economies of scale

# F

## Forgiving

- Fault tolerant
- High stability decoherence not an issue

# Photonics has unique advantages for universal quantum computing



# Photonics outperform existing quantum technologies

|                      |                 | Photonics           | Superconductors   | lon Traps         | Quantum Dots                                                            | Cold Atoms        |  |  |
|----------------------|-----------------|---------------------|-------------------|-------------------|-------------------------------------------------------------------------|-------------------|--|--|
| Qubit Quality        | Gate fidelity   | 99.9%               | 99.9%             | 99.9%             | 99%                                                                     | 99%               |  |  |
|                      | Lifetime Qubit  | ∞                   | 1 ms              | 50s               | 1 to 10 s                                                               | 100 ns            |  |  |
| Main Specifications` | Temperature     | Room temperature    | Near OK           | NA                | Near OK                                                                 | NA                |  |  |
|                      | Integration     | All-to-All          | Nearest Neighbors | All-to-All        | Nearest Neighbors                                                       | Nearest Neighbors |  |  |
|                      | Scalability     | Horizontal          | Horizontal        | NA                | NA                                                                      | Horizontal        |  |  |
|                      | Notable players | XANADU Y PsiQuantum | IBM IQM<br>Google | ionq<br>Honeywell | O <sup>silicon</sup><br><sup>Quantum</sup><br>computing<br><b>intel</b> | ⊘PASQAL OldQuanta |  |  |



# World's best photonic quantum computing technology



QUIX

# Core technology developed, based on European value chain

### The only QPU commercially available

10x more fully programmable modes than nearest known competitor

### Scalable

Beyond 1,000 qubits is just engineering

# Award-winning foundational technology

20-mode quantum photonic processor best in class awarded with Prism Award '23

### Core element of R&D activities in Europe

QuiX's mature processor is widely used in current activities and makes QuiX a key partner (15+)



# Useful Quantum Computers require 100+ logical Qubits. Quantum computing at scale requires modularity.

## limited qubit count physical-technical boundaries



Useful universal quantum computers need over 100+ logical qubits orders of magnitude more scalabilityInterconnecting neighboring processors



## LIMITATIONS

- Increasing yield requirements with increased size
- Density of the electric supply lines
- Fiber coupling of many waveguides simultaneously reduces coupling efficiency

Flying Qubits offer enhanced error correction



- Reduces fabrication requirements
- Allows for rapid scalability and large cluster states
- Ensures upgradeability
- Allows to cool the detector modules only



# Design of a photonic quantum computer (MBQC)









Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

# First universal photonic quantum computer in Europe sold to DLR

#### QuiX is the industry partner of the German Aerospace Center

- 4-year project of the DLR Quantum Computing Initiative (2022-2026)
- Co-development of use-cases
- Develop first-ever commercial sale of a photonics-based universal quantum computer

| Post-quantum<br>Cryptography                   | Quantum Machine<br>Learning            |
|------------------------------------------------|----------------------------------------|
| Planning optimization for satellite operations | Simulation of chemical redox reactions |

11



# First quantum computing hardware delivered on schedule





## **OM** ware

# Building partnerships for rapid market access-case study QMware

#### **Qmware and QuiX Quantum set up a hybrid data center in Enschede**

- Framework agreement signed
- Data Center for hybrid QC (commercial computer = quantum computer) will be located on site in Enschede
- QMware customer will have cloud access to the HPC/QCU unit

#### Hybrid Quantum Computing

Quantum Machine Learning

13



### Low loss

Transmission of photonic chips is impoved constantly. Coupling loss gives still the major contribution

## Fast and low loss Phase shifters

Integration of different materials (piezo-electric, electro-optics or others)



#### **Beam sources**

- Currently there are competing approaches
- Single Photons vs. Squeezed light



### **Control electronics & Detectors**

- Multiple manufacturers
- Good progress through continuous
   engineering

# Quantum Photonics technology challanges





# Low loss phase shifters and fast phase shifters

# Supply and Value Chain Development





# Thank you for the great cooperation, QuiX ecosystem



# Thank you!





# Appendix



19



# **Product Portfolio**



| Solutions for | R&D, quantum computing    | Optimization, simulation       | All industry sectors |
|---------------|---------------------------|--------------------------------|----------------------|
| Customers     | Researchers, QC companies | Healthcare, finance, logistics | Full industry        |
| Cloud access  | No                        | Yes                            | Yes                  |

• QuiX Quantum sells hardware and also cloud access as a service.

• QuiX Quantum sells OEM processors as well as full Quantum Computing systems.



## **Proven product development**



### In 4 years from 16 to 2500 tunable and fully operational interferometers including thermal and electrical error correction



Product

<sup>1</sup>Taballione, Caterina, et al. "8× 8 reconfigurable quantum photonic processor based on silicon nitride waveguides." Optics express 27.19 (2019): 26842-26857. <sup>2</sup> Taballione, Caterina, et al. "A universal fully reconfigurable 12-mode quantum photonic processor." Materials for Quantum Technology 1.3 (2021): 035002. 21 <sup>3</sup> Taballione, Caterina, et al. "20-mode universal quantum photonic processor." arXiv preprint arXiv:2203.01801 (2022).

# Support from a well-developed photonics ecosystem

## MESA+ INSTITUTE

## Provide and maintain infrastructure

- 1250 m2 cleanroom (ISO 5 / ISO 7)
- 1000 m2 specialized analysis equipment





## Manufacture TriPleX chips, process design kit (PDK)

- 2 decades of experiance with SiN photonics
- TriPleX exclusively licensed to QuiX Quantum





## Packaging the QuiX processor

• Automated packaging technology solutions for thermal and electrical contacting





Quix QUIC Quì 4.0 K 23 % 860 M ----------4.0 K 23 % 800 M 40 K 23 X 800 M ----- Q \_\_\_\_\_ **()** 40 K C 23 X 840 M C TUN TUN

ଭ୍ୟୁ

Sale-

## **Gate-Based Quantum Computing**





#### Source: Qiskit documentation

- Quantum computing in three steps!
- 1. Input Qubits
- 2. Apply gates
- 3. Perform measurements

Lot of technical knowhow needed to preserve the coherence of the qubits and do error correction!



## **Measurement-Based Quantum Computing**





Mikkel V. Larsen et al. "Deterministic generation of a two-dimensional cluster state.*Science***366**,369 372(2019). DOI:<u>10.1126/science.aay4354</u>

## Workings of measurement based quantum computing:

- 1. Create a large entangled network of (photonic) qubits
- 2. Apply only single-qubit gates
- 3. Measure the qubits in selected basis
- 4. Depending on measurement outcome change basis and measure another qubit.

One way quantum computing is very resource efficient, establishing the cluster state is challenging.



# Core IP is scalable platform for future development requirements

#### Future Development Layers on TriPleX©



- Fast multiplexers and switches are required for efficient and powerful quantum computing
- TriPleX<sup>™</sup> Silicon Nitride has low loss but no ability of fast electro-optic oder piezo-optic modulation. Another sandwich layer, deposited locally where fast modulation is required, enables optimized properties:
  - Switching voltages < 5 V
  - Switching times > 100 MHz
  - Power consumption < 100 mW
  - Lowest losses per unit cell

#### Core IP Platform TriPleX<sup>©</sup> Silicon Nitride



- TriPleX<sup>™</sup> Silicon Nitride: a low loss waveguide technology for single mode laser light in 405-2350 nm wavelength range
- Low loss down to 0.001dB per cm
- Control of signal combination/splitting, intensity, phase, mode size, polarization and input-output geometries
- Library of passive and active building blocks
- Stable over wide temperature range
- Optimized interface to fiber or free space configurations

### Electronmagnetic field in SiN, SiO<sub>2</sub> Sandwich









# Silicon Nitride is an essential platform for quantum computing

- TriPleX™ Silicon Nitride: a low loss waveguide technology for single mode laser light in 405-2350 nm wavelength range
- Low loss down to 0.001dB per cm
- Control of signal combination/splitting, intensity, phase, mode size, polarization and input-output geometries
- Library of passive and active building blocks
- Stable over wide temperature range
- Optimized interface to fiber or free space configurations

Electronmagnetic field in SiN, SiO<sub>2</sub> Sandwich



SCIENCE ADVANCES, 7 Oct 2022, Vol 8, Issue 40 DOI: 10.1126/sciadv.abq2196



# spiral waveguides with attenuation of 0.3 dB/m measured in Lab





# Insertion Loss < 3dB Transparency at 9xx and 15xx





# Fidelity and Programmability > 99 %





# **Beam sources: requirements**







Mahmudlu et al., arXiv:2206.08715

Source: Sparrow Quantum QD embedded in a photonic crystal

Source: Quandela QD embedded in micropillar cavity

|                      | GKP (CVDV)                   | Squeezed States (CV)                    | Single Photons (DV)                                 |  |  |  |
|----------------------|------------------------------|-----------------------------------------|-----------------------------------------------------|--|--|--|
| Minimal requirements | > 10 dB squeezing            | > 15 dB of squeezing                    | > 90 % indistinguishability<br>> 80 % brightness    |  |  |  |
| Most promising       | Optimal for error correction | Large scale cluster states demonstrated | Direct generation of linear cluster states possible |  |  |  |
| Most annoying        | Probabalistic generation     | Less efficient error correction schemes | Probabalistic clusterstate generation               |  |  |  |



# Fully integrated, turn-key entangled photon source

## Indistinguishability > 97% Heralding efficiency > 80%





Mahmudlu et al., "Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation", arXiv:2206.08715



# Quantum computing will make the impossible possible



**Logistics** Route optimization



High Tech AI & Machine Learning



Healthcare

Personalized medicines & incredibly fast drug discovery



## Engineering

Simulate chemical and biological systems



Fraud detection & trading



# The QC Market will be large, but seems difficult to forecast

- Wildly different numbers are projected by market research companies
- But concensus is that after 2025 the market will be several B\$ and after 2030 10's of B\$

| Publised by |                              | 2020 | 2021  | 2022 | 2023 | 2024 | 2025   | 2026  | 2027  | 2028  | 2029  | 2030   | 2031 | 2032   | 2040   | CAGR | CAGR Period |
|-------------|------------------------------|------|-------|------|------|------|--------|-------|-------|-------|-------|--------|------|--------|--------|------|-------------|
| 2020        | Fortune Business Insights    |      | 555   | 712  |      |      |        |       |       |       | 4,758 |        |      |        |        | 31%  | 2022-2029   |
| 2021        | IDC                          | 412  |       |      |      |      |        |       | 8,600 |       |       |        |      |        |        | 54%  | 2021-2027   |
| 2021        | Brandessence Market Research | 359  |       |      |      |      |        |       | 2,075 |       |       |        |      |        |        | 29%  | 2020-2027   |
| 2021        | Quantum Insider              |      |       |      |      |      | 4,000  |       |       |       |       | 26,000 |      |        |        | 45%  | 2021-2030   |
| 2021        | Quantum Insider – Low        |      | 300   |      |      |      | 3,500  |       |       |       |       | 18,000 |      |        |        | 39%  | 2025-2030   |
| 2021        | Quantum Insider – High       |      | 1,300 |      |      |      | 10,000 |       |       |       |       | 65,000 |      |        |        | 45%  | 2025-2030   |
| 2021        | Verified Market Research     | 252  |       |      |      |      |        |       |       | 1,797 |       |        |      |        |        | 30%  | 2021-2028   |
| 2022        | Research and Markets         |      | 391   |      |      |      |        | 1,600 |       |       |       |        |      |        |        | 33%  | 2021-2026   |
| 2022        | Market Research Future       |      |       |      |      |      |        |       |       |       |       | 18,160 |      |        |        | 34%  | 2022-2032   |
| 2022        | Fortune Business Insights    |      | 486   |      |      |      |        |       |       | 3,181 |       |        |      |        |        | 31%  | 2021-2028   |
| 2023        | Markets and Markets          |      |       |      | 866  |      |        |       |       | 4,375 |       |        |      |        |        | 38%  | 2023-2028   |
| 2023        | Market Watch                 |      | 236   |      |      |      |        |       |       | 1,988 |       |        |      |        |        | 35%  | 2022-2028   |
| 2023        | Omdia                        |      |       | 942  |      |      |        |       |       |       |       |        |      | 22,000 |        | 37%  | 2022-2032   |
| 2023        | McKinsey – Low               |      |       |      |      |      |        |       |       |       |       |        |      |        | 9,000  |      |             |
| 2023        | McKinsey - High              |      |       |      |      |      |        |       |       |       |       |        |      |        | 93,000 |      |             |
|             | Min                          | 252  | 236   | 712  | 866  | 0    | 3,500  | 1,600 | 2,075 | 1,797 | 4,758 | 18,000 | 0    | 22,000 | 9,000  |      |             |
|             | Max                          | 412  | 1,300 | 942  | 866  | 0    | 10,000 | 1,600 | 8,600 | 4,375 | 4,758 | 65,000 | 0    | 22,000 | 93,000 |      |             |



# We are accessing a fast growing, billion euro market

€1.1Bn €1.8Bn €2.85Bn €3Bn €3Bn UK France EU NL Total Subsidy

Current subsidy market for next ~10 years

### QC market for hardware and cloud services





**Subsidy market:** McKinsey Global Institute. 2023, April 24. Quantum technology sees record investments, progress on talent gap. QC market size: Inside Quantum Technology, Quantum Network: A ten-year forecast and opportunity analysis. September 2020

35