PHOTONIC SOLUTIONS FOR QUANTUM TECHNOLOGIES

11.10.2023

Tissot T-touch Connect with ultra-low power OS and black photovoltaic dial developed and manufactured at CSEM

CSEM is a public-private, non-profit Swiss technology innovation center, focusing on micro- and nanotechnologies.

CSEM enables competitiveness through innovation by developing and transferring world-class technologies for the industrial sector.

Our technologies fuel the innovation of more than 200 industrial partners every year.

OUR USP #1: CUSTOMER CENTRICITY

Staff with industry experience

Long-term support

(80% of staff on permanent contract)

Processes with builtin confidentiality

Industrial equipment

(clean rooms, characterization labs)

Proven project management methodology (300 projects/year)

QMS & certifications

(ISO 9001 QM, 14001 Environment and 13485 Medical devices)

COMBINING EXPERTISE, PASSION, AND DIVERSITY FOR SUCCESS

46	

NATIONALITIES

35%

28%

TECHNOLOGIES IN FOCUS TO FOSTER INNOVATION

QUANTUM ACTIVITIES AT CSEM

• Quantum sensing with hot vapors

- MEMS atomic vapor cells
- Miniature atomic clocks
- Optically pumped magnetometers
- Miniature gyroscopes

Beyond the state-of-the-art

- PIC for miniaturization
- PIC for quantum computation
- Non-classical light states

MEMS atomic vapor cells: a platform for different applications

GHz sensor and imager

Magnetometers 7 · Photonics at CSEM mac**Qsimal**

Rydberg gas sensor

Miniature atomic clocks

Gyroscopes

MEMS ATOMIC VAPOR CELLS

CSEM cells specific features:

- RbN₃ wafer-level filling
- Al₂O₃ coating for lifetime enhancement
- Au microdiscs for clock frequency stability improvement

CHIP-SCALE ATOMIC CLOCK

Chip-scale atomic clock development at CSEM

PHYSICS PACKAGE DESIGN

- CSEM flat formfactor design
- 3 patents
- Adapted for industrial needs

CSEM CHIP-SCALE ATOMIC CLOCK

- < 5.10⁻¹¹ stability @ 1s < 5.10⁻¹² / day frequency drift < 50 mW power consumption (PP + ASIC)
- Volume: $1.8 \text{ cm}^3 (\text{PP})$

OPTICALLY PUMPED MAGNETOMETER

MOTIVATION: MAGNETOENCEPHALOGRAPHY (MEG)

RESULTS AND NEXT STEPS

15 fT/Hz^{1/2} sensitivity in the 20 Hz – 100 Hz range

MINIATURE GYROSCOPES

mac**Qsimal**

:: CSem

ATOMIC GYROSCOPE: SPIN PRECESSION

BOSCH

Larmor precession

Spin precession: Magnetic moment $\vec{\mu}$ of the atomic spin exhibits a torque $d\vec{\mu}/dt$ in an external magnetic field \vec{B} :

$$\frac{d\vec{\mu}}{dt} = \vec{\mu} \times \gamma \vec{B}$$

• Larmor frequency w/ external rotation ω_r

 $\vec{\omega}_L = \gamma \vec{B} + \vec{\omega}_r$

 γ : gyromagnetic ratio

Xe free-induced decay signal

MEMS cells by CSEM

CSem

mac**Qsimal**

Ceramic cell package

PHOTONIC INTEGRATED CIRCUITS FOR QUANTUM APPLICATIONS

PIC for quantum computing

PIC for quantum sensing

QUANTUM COMPUTER RACE: PHOTONS VS. SUPERCONDUCTING CIRCUITS

2019: Google's Sycamore solved a computational problem in just 200 seconds with 54 qubits— compared to a supercomputer's 10,000 years

2021: IBM presents 127-qubit Eagle processor

2021: Xanadu presents 8-qubit photonic quantum chip

2022: QuiX releases 20 mode photonic quantum processor

2023: IBM announced 1121-qubit Condor processor announced QuiX announced 32 mode photonic quantum processor

PHOTONIC QUANTUM COMPUTER: BUILDING BLOCKS

https://phys.org/: Andrew Masuda, University of California - Santa Barbara

MOTIVATION: LNOI PLATFORM FOR PICS

More bandwidth

(internet bandwidth grows by100x in the next decade)

DIGITALEUROPE The magic of PICs in miniaturization of optics

More Compact and Faster EO Modulators!

Issue of power consumption

(ICT today consume ~10% of total electrical energy in the

world) The European **Green Deal**

Efficient and Low-loss EO Modulators!

Integration and scalability

Small bending radii

Europe chip act

EO Light control below $1\mu m$ wavelength

(In wavelength range that Si or InP are not transparent)

Wide-Transparency Window

Non-Linear Photonics and Metrology

(Wavelength conversion, 2nd harmonic generation, optical frequency combs)

:: CSem N. Akhmediev et al., Science 2016 N. Jones, Nature 2018 https://blog.telegeography.com/466-tbps-the-global-internet-continues-to-expand

LNOI PROPERTIES

Property	Value
Wafer cut	х
Refractive index (ordinary)	2.21 (@ 1550 nm)
Refrafctive index (ex-ordinary)	2.13 (@ 1550 nm)
Bandgap	4.9eV
Transparency window	350nm - 5.5 μm
E0 coefficient	r ₃₃ = 31 <i>pm/V</i>
$\chi^{(2)}$ nonlinearity	$3 imes 10^{-11} \ { m m/V}$
$\chi^{(2)}$ nonlinearity	$1.6 imes 10^{-21} m^2 V^{-2}$
Piezoelectric coefficient	$\rm d_{33}{=}~6.0\times10^{-12}~C/N$

Piezoelectric effect

- Acousto-optical modulators (AOM)
- Optical MEMS integration
- Gyros and pressure sensors

Intrinsic EO coefficient

- Fast (> 100 GHz) and low $V\pi$ (< 1 V) modulators
- Addressing the need for a wider bandwidth
- CMOS-level voltage operation
- Ultra-low insertion loss modulators

- LiNbO3 bandgap = 4.9 eV
- High optical power handling
- Low optical loss
- No parasitic two-photon absorption

Integration and scalability

- Low-loss waveguides (< 0.1 dB/cm)
- Small bending radii (~ 30 μm)
- Compact circuit footprint
- low-power building blocks
- Programmable photonics
- High-port-count switches

NO PHOTONICS PLATFORM IS IDEAL \rightarrow **FUTURE IS HYBRID!**

Need for Components to Generate, Transport, Process, and Detect light

No single material can do everything!

Famous PIC platforms / Property	InP	Si	SiN	LNOI	Polymers
Transparency window	0.9 – 2 μm	1.1 – 8 μm	0.25 – 8 μm	0.3 – 5.5 μm	0.5 – 2 μm
Propagation losses	1.5 to 3 dB/cm	0.1 to 3 dB/cm	0.01 to 0.1 dB/cm	<0.1 dB/cm	<0.5 dB/cm
Two-photon absoprtion	high	high	Very low	Very low	low
Electro-optic coefficient (Modulators)	not intrinsic	not intrinsic	-	High (31pm/v)	Some polymers
Optical gain (lasers, amplifiers)	Yes	-	-	-	-
Detectors	Yes	Yes (<1µm)	-	-	-
Industry Status 24	Ramping up	High Volume	Low Volume	First R&D foundry at CSEM	R&D Qualification

CSEM PIC PROJECTS PORTFOLIO

CLUSTEC

a) fiber-optic 3D cluster state generator

Project scope: Develop a scalable quantum computer (technology and protocols) based on large-scale continuous variable (CV) cluster states

 Develop squeezed state generators based on PPLN and circuitry

b) LNoI 3D cluster state generator

Project scope: Heterogeneous integration of LNOI and GaAs on SiN

LOLIPOP | Lithium NiObate empowered siLlcon nitride Platform for fragmentation free OPeration in the visible and the NIR

ABOUT LOLIPOP

- QKD system on chip (squeezed state generation and OPO)
- Frequency converter 1560/780 nm and 1000/500 nm
- PIC-based FMCW LIDAR module

https://horizon-de-lolipop.eu/

QKD transmitter

LITHIUM NIOBATE ON INSULATOR (LNOI) PIC PLATFORM AT CSEM

STANDARDIZATION AND ACCESS

• Process Design Kit (PDK)

LNOI MPW CURRENT OFFERING

MPW RUNS	Multiple RUNs/year	Customers would receive > 8 copies/design	Custom chip size from 5x5 mm2 up to 10x30 mm2 *
Custom RUNs	Flexible starting date(per customer's request)	Customers would receive > 500 chips/wafer	Complete freedom in customizing chip size and shape

* envisioning to reduce chip size down to 2.5 x 2.5 mm²

Minimum order: 100 mm² design area / mask

PIC IN QUANTUM:

Miniature two-photon atomic clocks

ESA NAVISP A-CSAC project

This work was conducted and funded under the Navigation Innovation and Support Programme (NAVISP) of the European Space Agency (ESA), to support innovation and competitiveness in the field of Position, Navigation and Time (ESTEC contract no. 4000130251). The views expressed in this document are those of the authors and cannot be taken to reflect the official opinion of the European Space Agency.

PIC IN THE TWO-PHOTON CLOCK

Narrow CW source

Boller et al., Photonics, 2020

Kerr FC

Wildi et al., OL 2019

MEMS cell

Signal mixing / filtering, ...

Wavelength conversion

Obrzud et al., OL 2019

CEO frequency detection

Obrzud et al., APL Photonics 2021

CLOCK STABILITY AND PIC TESTING

Optical atomic clock test results with chip-scale compatible elements

SiN PIC with functionalities for a 2-ph clock

PIC testing

SUMMARY

- Photonics is a key enabling technology for many quantum applications
- Rubidium cell technology is a qantum platform
- LNOI PICs are core building block for photonic quantum computation
- LNOI MPW allows you to get involved: make your own quantum PICs!

DON'T FACE CHAELENGES ALONE - PARTNER WITH US.

«CSem