LASER TECHNIK Eric Punzel, Andreas Bürger

Cell contacting by laser welding

Epic-Meeting ARENA2036

AGENDA

- BBW Lasertechnik GmbH
- E-Mobility at BBW Lasertechnik
- Overview laser welding
- Cell contacting by laser welding
- Quality assurance measures
- Process chain battery module production at BBW

R LASER TECHNIK

Contract manufacturing through innovative laser material processing:

From the first experiment to industrial production.

BBM

BBW Lasertechnik heute

Family company & leading manufacturing service provider

In-house construction departement

Complete processing of assemblies

In-house R&D

Comprehensive quality management (ISO 9001, DIN 2303)

50 laser systems

200 qualified employees

In-house training & education

E-Mobility at BBW Lasertechnik

Absorption and heating mechanism

- Heating by conduction at low then sity $(10^3 10^4 \text{ W/cm}^2)$ e.g. laser hardening
- Melting and formation of a melting front $(10^5 10^6)$ W/cm^2) e.g. laser heat conduction welding
- **Evaporation** in a vapor capillary at higher intensity (>10⁶ W/cm^2)

e.g. laser deep welding

Sublimation and plasma formation at even higher power density (>10⁹ W/cm²) e.g. laser marking, laser ablation

X-ray analysis: welding process

- Heat conduction welding (left), Pure melting of near-surface areas
- Deep penetration welding (right) with vapor capillary and, in the case of an unstable welding process, also formation of process pores

X-Ray Source: DESY, PETRA III, Beamline P07, 37keV

doi for citation and download: https://doi.org/10.18419/darus-2078

Laser deep welding

Principle:

- Formation of a vapor capillary
 - Absorption
 - Pressure equilibrium
 - Circulation
- Convection in the melt pool
- Solidification of the melt

Cell formats and weldet joints (examples)

Prismatic cell	Round cell	Pouch cell	
Aluminum 1 mm Aluminum 1 mm	Copper 0,3 mm Steel 0,3 mm Aluminum 0,3 mm Steel 0,3 mm	Copper 0,3 mm Aluminum 0,5 mm Aluminum 0,5 mm Copper 0,3 mm	

Challenges:

- High Quality requirements: zero defect tolerance
- Safety: Avoid short circuits and damage
- Material variety: Welding of dissimilar welding
- Technology: Specific clamping technology and suitable laser required
- Cots: Minimum cost per weld

Prismatic cell

ß

BBW solution approach:

- Beam shaping
- Zero defect tolerance through inline process monitoring
- 100% traceability through laser marking
- Chemical cleaning or laser cleaning

Round cell

BBU

BBW solution approach:

- Overlap welding with the laser beam
- Low penetration welding to avoid intermetallic phases
- Lowest heat influence
- Beam shaping and/or high-speed
- Zero defect tolerance through inline process monitoring

Pouch cell

		ALC: N			
dia.	pi Lig	ЧC.	(e.C.)	Lill.	120.1
113			i li se	ોર્ડ્સ	
1 SPLA	S. Kanada	Circle in	di di	issection	1.1.1
1946	e	الله لمن	All	Litera	
N.C.		115	(Circle	64.44	a site

BBW solution approach:

- Overlap welding with the laser beam
- Single or multilayer welding
- In case of dissimilar metals only low weld penetration allowed
- Beam shaping
- Zero defect tolerance through inline process monitoring

Metallography

- Destructive testing
- Preparation by: Separating the specimen, embedding, grinding, polishing, contrasting by selective etching.
- Evaluation by: Microscopy, documentation.
- Up to 1 µm with light microscope, 10-100 nm with scanning electron microscope
- Distinction between macro and micro cross section.
 - Macro: Evaluation of layer structure, firing ratios, HAZ, segregations, and location and type of defects (pores, cracks).
 - Micro: microcracks, micropores, microstructure, non-metall.
 inclusions
- Detection of all defect patterns
- Used by BBW Lasertechnik in process development and during series production

BBM

Online-Prozessüberwachungen

- **Process light**: is generated by workpiece, melt, metal vapor
 - Detection principle: A photodiode detects the process light in a limited wavelength range, comparison with a reference signal

- Welding depth measurement: Optical coherence tomography
 - Detection principle: Comparison of back-reflected measuring radiation ____ with a reference beam \rightarrow Interferometer

• Monitoring of seam contour:

- Variant 1: Camera monitoring: Detection of the seam by evaluating ____ image data
- Variant 2: Imaging OCT: Light-sectioning method by scanning the surface

16

Battery module production process chain

Quality assurance and documentation

Logistics and procurement

Project data:

- Battery module with prismatic cells
- Application in logistics
- Online process monitoring: traceability at cell and weld seam level
- First test to series production
- Automation through in-house engineering and mechanical engineering
- Capacity up to 200.000 modules p. a.

Outlook: Dynamic Beam Shaping

- @BBW: 32 individual laser modules are combined
- Each channel can provide 10 500 W
- Modulation within nanoseconds

 \rightarrow Principle of constructive and destructive superposition, wave components cancel each other out or reinforce each other

BBM

18

Source: Civan

Example: Aluminum AW 6060 & Beam shaping

Parameter: Disk laser, BLW 50/50, focal diameter 250/1000; power = 4,5 kW, speed = 100 mm/s

Parameter: frequency = 500kHz; power = 1,8 kW, speed = 100 mm/s

Parameter: frequency = 222,2kHz; power = 1,8 kW, speed = 100 mm/s

CONTACTING

Eric Punzel

Head of R&D <u>e.punzel@bbw-lasertechnik.de</u> +49 8036 90820 83

Send us your project or product idea!

BBW Lasertechnik GmbH | Gewerbering 11, 83134 Prutting 08036 90820-0 | info@bbw-lasertechnik.de

Thank you!

GET THE LATEST UPDATES

