Soni-Laser

Ultrasonic assisted laser welding for high volume assembly of automotive battery packs

WELDING TECHNOLOGIES LTD

EPIC Laser applications along Battery manufacturing process at ARENA2036.

24th October 2023

Aim:

- Using non-contact Power-Ultrasonic Vibration Treatment subsystem that assists the laser welding process of EV batteries and enhances the integrity and quality of the welds.

- Reduce residual stresses, along with a 10% improvement in mechanical properties (e.g. strength, elasticity) of the battery weld, due to grain refinement and phase distribution

- 30% mitigation of intermetallic compounds reducing brittleness. Improving mechanical strength and impendence

Summary

- Introduction to Soni-Laser
- Contact Ultrasonic Treatment
 - Aluminium Lap weld analysis
 - Copper to Aluminium Analysis
- Contactless Ultrasonic Treatment
 - Aluminium Lap weld analysis
 - Copper to Aluminium Analysis
- Micro/SEM/EDX analysis
- Cell Welding
- Q&A

Contact Ultrasonic Treatment - Lap Weld Aluminium

Ultrasound (Contact) Vs Baseline

- Al3003 to Al3003
- Al1050 to Al1050

Trials

- Two 150x300mm plates overlapped at 25mm
- Trial to compare Baseline vs
 Ultrasound
- Variables
 - Transducer Power
 - Frequency > 20kHz
 - Heat input

Copper to Aluminium Testing

Copper to Aluminium – Med. Freq vs Baseline

Conclusion

- Pull test shows improvement to the strength and ductility
- Evidence from the macros, shows good conditions for 30% US power at medium frequency
- Evidence of over cavitation in high US power as seen with Al3003 and Al1050
- The hardness of the alloy produced will render the weld unsuccessful

Contactless Ultrasonic Treatment – Lap Weld Peel Test Jig

- Ultrasound (Contactless) Vs Baseline
 - Al1050 to Al1050
 - Cu101 to Al1050
- Trials
 - Positioning Trials
 - Configuration Trials
 - Freq/Power Trials

Focused Horn

Taper Horn

Needle Horn

Al1050 – Al1050 Welding

Welding Assumptions

- Material: Aluminium
- Single Plate Dimensions: 50x50
- Laser Type: YLS 6000 CT
- Laser Used: IPG
- Laser Fibre: 0.1 mm
- Peel Test Jig
- Steel Base
- Acetal Interface To minimize wave propagation
- Aluminium Protection with air gap To protect acetal board from laser radiation

Trials

- Ultrasound (Contact) Vs Baseline
- Testing different variables (Freq., Power, configuration etc.)
- 2 x 2mm L shaped plates
- Oval Weld, 5mm

- Shielding Gas: Argon (99.99% purity) – 86 L/min
- Weld Type: Lap Weld/Stake Weld
- Target Weld Depth: 2mm-4mm
- Wobble: No Wobble

Results Al1050 to Al1050 at Optimal Frequency

Graph Number	Frequency	US Power	Transducer Type	Placement/Angle	Average Load, N	Load Analysis	Load Rank	Average Extension, mm	Extension Analysis	Extension Rank
1	Baseline	N/a	N/a	N/a	509.1	100%	4	11.0	100%	4
2	Low	70	Focused Horn	Contactless on the spot	561.0	110%	2	14.0	127%	2
3	Low	70	Needle 100%	Contactless on the spot	547.0502	107%	3	13.6	124%	3
4	Med	70	Taper Horn	Contact Compressional	584.2	115%	1	18.0	164%	1

Al1050 - Al1050 Optimal Freq - Ultrasound vs Baseline

Cu101 – Al1050 Welding

Welding Assumptions

- Material: Copper
- Single Plate Dimensions: 50x50
- Laser Type: YLS 6000 CT
- Laser Used: IPG
- Laser Fibre: 0.1 mm

Peel Test Jig

- Steel Base
- Acetal Interface To minimize wave propagation
- Aluminium Protection with air gap To protect acetal board from laser radiation
- 2 Transducer Arms

Trials

- Ultrasound (Contact) Vs Baseline
- Testing different variables (Freq., Power, configuration etc.)
- Cu101 0.9mm and Al1050 2mm
- Oval Weld, 5mm

- Shielding Gas: Argon (99.99% purity) – 86 L/min
- Weld Type: Lap Weld/Stake Weld
- Target Weld Depth: 0.9mm-2.9mm
- Wobble: 0.7mm/250Hz, circle

Results Cu101 to Al1050 at Optimal Frequency

	Transducer	Placement/Ang	Average	Extension	Extension	Average	Load	
Frequency	Туре	le	Extension, mm	Analysis	Rank	Load, N	Analysis	Load Rank
1 Baseline	N/a	N/a	4.8	100.00%	6	110.0	100.00%	7
		Contactless on						
2 Low	Taper Horn	the spot	20.8	431.61%	1	. 246.8	224.37%	1
		Contactless on						
3 Low	Needle 20%	the spot	11.9	246.52%	2	170.8	155.27%	2
		Contactless on						
4 Med	Focused	the Spot/45Deg	6.5	135.11%	5	112.2	102.06%	6
		Contactless on						
5 Med	Taper	the Spot/45Deg	4.7	98.27%	7	124.3	113.00%	5
		Contactless on						
6 High	Focused	the Spot/45Deg	10.7	221.03%	3	170.1	154.69%	3
		Contactless on						
7 High	Taper	the Spot/45Deg	7.1	147.36%	4	137.8	125.26%	4

Cu101 - Al1050 Optimal Freq - Ultrasound vs Baseline

Evaluation Cu-Al

- Load analysis overall improvements when US is applied
- Key performers
 - + Taper Horn Contactless on the spot, Low Frequency
 - + Focused Horn vs Taper Contactless on the spot, Medium and high frequency
 - Due to the different wavelength associated with the different transducers horn
 - Medium overall not showing the best improvements

SEM/EDX - Cu101 to Al1050 Baseline

^{1mm}Al K series

Electron Image 4

Al K series

Cu K series

100µm

100µm

Cell Welding Cu-Al

<u>Soni-Laser Project - Ultrasonic assisted laser welding for high volume assembly</u> <u>of automotive battery packs.</u>

John Silva (Technical Director) john@carrswelding.co.uk https://carrswelding.co.uk

Phil Carr (Director)	
pc@carrswelding.co.uk	
ttps://carrswelding.co.uk	

Samiul Hoque (R&D Specialist) samiul@carrswelding.co.uk https://carrswelding.co.uk

Evelina Guduke (Financial Controller) eva@carrswelding.co.uk https://carrswelding.co.uk