

Flexible use of laser beam technology for electromobility

Dr.-Ing. Jan-Philipp Weberpals EPIC Meeting on Laser Applications along Battery Manufacturing Process at ARENA2036

Use of laser radiation in electromobility

» Laser beam technology offers a wide range of possible solutions for electromobility

Challenge of prototyping: one equipment for different requirements

Laser beam remote welding of galvanized steel (HV-module housing)

- fillet welds at lap joint with different sheet thicknesses
 - > side plate 0,8 mm on inner endplate 1,5 mm | inner endplate 1,5 mm on socket min. 2,5 mm
- no trough-welding due to mountability

Laser beam remote welding of aluminum (cell contacting)

- line seams at lap joint on pure aluminum
 - > cell connector (~ 1 mm) on cell terminal (thickness \geq 3 mm)
- no through weld to protect the battery cell with limit temperature of 85°C

Flexibility of the process as motivation

S ב BrightLineWeld **PFO 3D SeamLineRemote**

material flexibility

geometry flexibility

adaptable

sustainable

Laser beam remote welding of aluminum (cell contacting) Strategy of process control

BrightLineWeld

Power distribution 100% in the core

» small spot enables beam oscillation
» adjustment of temperature field
» reduction of seam imperfections

Seam geometry

» Synergies from car body construction can be used!

Laser beam remote welding of aluminum (cell contacting) Strategy of process control

Beam oscillation

Key factors

- path accuracy up to a frequency f ≤ 250 Hz reached (feed rate ∞ frequency)
- oscillation pattern
 - circular: beam velocity at surface almost constant

BUT: V-shaped seam cross-section with insufficient connection width

 > lateral: reduced beam velocity in the reversal points corresponds to feed rate THUS: increased heat input with U-shaped seam cross-section a sufficient connection width

lateral oscillation

lateral oscillation

Laser beam remote welding of aluminum (cell contacting) Presentation of results

Thickness of cell terminal t = 3 mm

Thickness of cell terminal t >3 mm

Status Quo:

- ightarrow necessary connection width achieved in all constellations \swarrow
- ideal seam geometry determined
- \cdot strength of all connections guaranteed \checkmark
- > limit temperature at the bottom side of cell terminal is not exceeded
- > contact resistance R < 15 $\mu\Omega$

» Contact resistance corresponds to the specific value of base material (performance increase of the entire battery

Laser beam remote welding of galvanized steel (HV-module housing) Strategy of process control

» laser dimpling for zinc degassing

» Use of laser beam on battery module housing due to high strength and minimal package requirements!

Laser beam remote welding of galvanized steel (HV-module housing) Presentation of results: side plate 0,8 mm on inner endplate 1,5 mm

Influence of direction of travel on lateral offset

- direction of travel 1: lateral offset = 0,2 mm
- direction of travel 2: lateral offset = 0,3 mm
 - Avoidance of trough-welding due to path correction (trigger distance = 1 mm)

direction of travel 2: offset 0,3 mm

Influence of direction of travel on edge tracking

- direction of travel 1: edge tracking o.k.
- > direction of travel 2: Scattering of triangulation lines at cutting
 - > geometry adjustment of side plate

Laser beam remote welding of galvanized steel (HV-module housing) Presentation of results : inner end plate 1,5 mm on socket

Essential development steps

- > adjustment of power distribution in BrightLineWeld to increase the connection width » decrease in notches
- increasing the lateral angle and reducing the feed rate to improve lateral bonding

» Flexibility of the tool to ensure high quality joints even in steel!

Use of laser radiation in electromobility Interim conclusion

Plant technology designed

Parameters developed

Clamping concept developed

» ONE flexible equipment for different requirements to increase sustainability

Holistic system approach to ensure productivity

Laser Welding Monitor 4.0

Use of process emissions for quality assurance in laser beam welding of cell connectors

Adaption LWM-sensor (LaserWeldingMonitor) to processing optics Measuring principle and mode of operation

Online process control guaranteed

- recording of process emissions with photodiodes in three wavelength ranges
 - non-destructive quality recording of the joint quality in real time
 - reliable defect detection with 100% online quality assurance
 - 24/7 transparency and traceability

Influence of laser power on static tensile force

Force-displacement- diagram

Increase of laser power leads to

- an increase of welding depth and joint width in the connection plane
- and thus, an increase in static tensile force

Measured value display Influence of laser power/ focal position on contact resistance/ static tensile force

clamping for measurement

- Increase in static tensile force in N
 - increasing laser power
 - > focal position slightly below workpiece surface
- and thus, a decrease in contact resistance in μΩ
 as a function of the distance between the measuring tips
 (the greater the distance the greater the contact resistance)

Measured value display Influence of laser power/ focal position on contact resistance/ static tensile force

Measured value display Influence of laser power/ focal position on contact resistance/ static tensile force

Measured value display Influence of laser power

Influence of laser power on process emissions with photodiodes in three wavelength ranges

11100

Working hypothesis Use of LWM signals for extraction of absolute physical values

Contribution LASER for a flexible production line for tomorrow's production

0

0

0

Fundamentals: Absorption of cold (solid) and hot (liquid) copper

Near infrared (IR): 1 μm

- Copper absorbs about 2% at room temperature
- Increase of absorptivity with increasing temperature (2% @ RT / 5% @ T_m / 20% @ T_b)

source: V. Khaskin et al: Effect of laser radiation absorption on efficiency of laser welding of copper and its alloys, The Paton Welding Jounal, No. 11, 2016, p. 31-35.

source: S. Kohl; Institute of Photonic Technologies, Erlangen

Visible wavelengths: 450 nm (blue) and 515 nm (green)

- Copper absorbs about 45% (blue) and 40% (green) at room temperature
- Reduced absorptivity at liquid copper with low absolute absorption difference

Technology equipment and experimental setup Sorted by ascending wavelength

Technology equipment and experimental setup Influencing factors and test parameters

Material thickness has significant influence on welding results

- Heat accumulation effect caused by thermal conductivity
- All experiments were performed with thick copper plates to ensure optimal heat transport

Varied process parameters to determine the process efficiency

Wavelength $\lambda = 450$ nm; $\lambda = 515$ nm; $\lambda = 1080$ nm

as well as the combination of $\lambda = 450$ nm and $\lambda = 1080$ nm (Hybrid)

Laser power and welding speed depending on source
 Copper alloy Cu-PHC

Determination of measures for metallographic investigations

- F: weld seam area in mm²
- t: penetration depth in mm

Laser beam welding of copper alloys for e-mobility Welding with visible wavelengths with respect to the welding depth

Welding with wavelength $\lambda = 450$ nm

- Achievable penetration depth in investigated parameter field very low
- > Threshold for keyhole welding is only exceeded at low welding speed and high laser power

Laser beam welding of copper alloys for e-mobility Welding with visible wavelengths with respect to the welding depth

Welding with wavelength $\lambda = 450$ nm

- Achievable penetration depth in investigated parameter field very low
- Threshold for keyhole welding is only exceeded at low welding speed and high laser power

Welding with wavelength $\lambda = 515$ nm

- Significant increase in penetration depth due to smaller focus diameter and higher output power
- > Threshold for keyhole welding is exceeded with $P \ge 1500$ W in the entire welding speed range

Laser beam welding of copper alloys for e-mobility Welding with near infrared wavelengths with respect to the welding depth

Welding with wavelength $\lambda = 1080$ nm as well as Hybrid ($P_{\lambda = 450$ nm} = 1500 W = constant)

- > Almost all penetration depths with $\lambda = 1080$ nm are high: t > 1mm
- > P = 2000 W: greater penetration depth with λ = 1080nm (Hybrid-process is power dominated with λ = 450nm)
- Increase of penetration depth with increasing laser power independent of wavelength distribution (IR dominant)
- Weld seam area is almost comparable due to same amount of energy input
- >> Seam shaping due to the power ratio of the two superimposed laser beams

Laser beam welding of copper alloys for e-mobility Welding with different wavelengths with respect to the resulting weld quality

Challenging weld defects are melt ejection, spatter formation, pore formation ...

- > $\lambda = 450$ nm: stable process, smooth surface, no spatters and pores due to heat conduction welding
- > $\lambda = 515$ nm: keyhole welding with spatter and pore formation at low welding speed
- > $\lambda = 1080$ nm: keyhole welding with spatter and pore formation at low welding speed, heat conduction welding is not stable/ possible

> Hybrid ($P_{\lambda = 450 \text{ nm}} = 1500 \text{ W}$): due to amount of visible wavelength improved weld quality at lower welding speed

>> Possible process strategies to reduce weld defects at keyhole welding are increased power AND speed

Laser beam welding of copper alloys for e-mobility Influence of different wavelengths on deep penetration threshold

Penetration depth < 0,5 mm only with visible wavelengths possible (heat conduction welding)</p>

- The shorter the wavelength the smaller the intensity for keyhole welding (threshold)
- The smaller the focus diameter the smaller the increase in depth (increase in process stability)

* source: T. Hesse: Laser welding with kW power in the visible wavelength range, TRUMPF GmbH + Co. KG, European Automotive Laser Applications 2020 C. Ullmann: Blue high-power Diode Lasers in the multi kW Range for new Process Capabilities in Welding of Materials for Electromobility, Laserline GmbH, European Automotive Laser Applications 2020

Laser beam welding of copper alloys for e-mobility Summary

Visible wavelengths ($\lambda = 450$ nm and $\lambda = 515$ nm)	
advantages	disadvantages
very high absorptivity and coupling efficiency	high thermal losses due to predominant conductive heat flow using large focus diameter or low welding speed
precise setting of parameters for penetration depth from 50 μm up to 1 mm	beam quality determines the use of optics (exemplary large working distance usability of scanner)
high weld quality at heat conduction welding	high investment costs
	use of shielding gases increases the process efficiency at keyhole welding (plasma absorption)

Near infrared wavelengths ($\lambda = 1080$ nm)		
advantages	disadvantages	
high process efficiency and associated weld quality with increased welding speed and laser power	minimal penetration depth > 1 mm (v ↑ und P ↑)	
high beam quality enables the use of scanner		
comparatively low investment cost		

Thank you!

