

Thermal Changes in Optical Systems – an Analytical Approach EPIC Meeting on Ultrafast Laser Processing at the LASER World of PHOTONICS

Dr. Tim Baldsiefen | 230627 - rev2

2023-06-28

Photonics Precision Engineering GmbH (PPE) Team in Jena

Dr. Jan Werschnik 15+ years experience

Carolin Münzberg 7+ years experience

Dr. Tim Baldsiefen 10+ years experience

Thomas Strzeletz 5+ years experience

Hans-Jürgen Feige 30+ years experience

Dominik Schulz 3+ years experience

Expertise

- Optical design
- Mechanical design
- Optical metrology
- Optical engineering
- Physics
- Rigorous optical simulations (Maxwell, heat,...)
- Software development
- Data science
- R&D management
- Project management
- Manufacturing support
- SCM (global)

Dr. Aleksei Garshin 10+ years experience

Kseniia Zavatskaia 5+ years experience

Potential for higher accuracy

Ultrafast laser applications

- Coulomb explosion compared to melting & evaporation allows higher application accuracy
- Optical system has to provide the required accuracy

Source: Jenoptik

1.) Femtosecond Laser Processing Of Metal And Plastics In The Steven

- Hypsh; Medical Device Industry
- 2.) Ultrashort-pulse lasers make near-perfect walls and edges possible
- Bill Peatman; Industrial Laser Solutionsfor Manufacturing

Ultrafast laser applications Potential for higher accuracy

- Coulomb explosion compared to melting & evaporation allows higher application accuracy
- Optical system has to provide the required accuracy

Static accuracy

- better nominal design
- better as-built performance
 - high-accuracy mechanical design
 - high-end assembly and testing

Dynamic accuracy

- performance should not change over application time
- main contributor: thermal changes

local temperature distribution

- Iaser power is absorbed, energy flows to edge of lens and is exhanged with surrounding heat bath
- local temperature distribution is formed
 - → index of refraction changes & material geometry
- both effects delay the light
- light at edges of lens is "faster" → focusing effect (this is independent of lens shape)

homogeneous temperature

- since most materials show increasing index and expanding size with temperature-increase:
 - \rightarrow there is no compensation by design, only reduction of individual contributions
 - → from system perspective one could dynamically refocus, but this requires knowledge about magnitude of focus effect

Classical

- design draft
- give lens geometry to FEM-engineer
- receive temperature distribution
- model focus shift
- reiterate design
- cumbersome
- time-consuming
- does not help much in understanding

Optical-analytical approach (PPE)

- induced phase difference depends linearly on thickness change and index change
- thickness and index, for small temperature changes, change linearly with temperature
- → when passing through material, the induced phase difference is proportional to the <u>average temperature</u> seen along the path

Analytics

1. reformulate static heat equation for rotationally symmetric systems for the average temperature along z

 $\overline{T}(\rho)$

2. Express lens thickness in perturbative expansion

$$d(\rho) = d_0 + \frac{c}{2}\rho^2$$

$$c = \frac{1}{R_2} - \frac{1}{R_1}$$

3. Solve for specified laser intensity distribution

Example Gaussian input beam

$$\overline{T}(\rho) = -\frac{P(\alpha d_0 + 2\mu)}{4\pi\lambda d_0} \left(\gamma + \log\left(\frac{\rho^2}{2\sigma^2}\right) - Ei\left(-\frac{\rho^2}{2\sigma^2}\right)\right) + \Delta\overline{T}(c;\rho) + \mathcal{O}(c^2)$$
solution for plate 1st order corrections in c

Example

- P: input power \rightarrow 1W
- λ : heat conductivity $\rightarrow 1W/(m^*K)$
- α : absorption coefficient material \rightarrow 1%
- μ : absorption coefficient coating \rightarrow 200ppm
- σ : beam width (= 1/e2 diameter/4) \rightarrow 1mm
- d0 = center lens thickness
- c =1/R2-1/R1
- ρ: radial coordinate

- γ: Euler-Mascheroni constant (0.577...)
- Ei(): exponential integral function

Example Plate

lens diameter = 10mm; d0 = 6mm

Example bi-concave

lens diameter = 10mm; d0 = 6mm; radius left = -20mm; radius right = 20mm

Example bi-convex

lens diameter = 10mm; d0 = 6mm; radius left = 20mm; radius right = -20mm

Example bi-convex

lens diameter = 10mm; d0 = 6mm; radius left = 20mm; radius right = -20mm

very good agreement in regions of large intensity

Thermal focus shift

 from analytical expressions for thermal distribution, one can now derive approximations for the thermal focus shift in the image plane

$$\Delta z = -\left(\frac{\partial n}{\partial T} + (n-1)\kappa\right) \frac{P_0(\alpha d_0 + 2\mu)}{4\pi\lambda} \left(\left(\frac{f^2}{\sigma^2} - 1\right)\ln(2) - 1\right) + \Delta z(c) + \mathcal{O}(c^2)$$

- κ: thermal expansion coefficient
- the 1st order correction to the focus shift already improves the estimate, especially for lenses with increasing edge thickness (1/R2-1/R1) > 0
- for lenses with strongly decreasing edge thickness, one would need to use higher order fits to the focus shift approximation

- to realize the accuracy provided by utrafast application processed, the optical system needs to conserve this accuracy
- absorbed laser light in optical system leads to formation of local temperature distribution and therefore focus shift
- this effect (almost) always moves the focus towards the optical system → compensation by design not possible
- we were able to derive simple analytical expressions to estimate the thermal distributions and the resulting focus shift
- the expressions for Gaussian input beam were compared to full FEM results and the high accuracy of the expressions was shown
 - solutions to topHat intensity distributions were also derived
- these approximations
 - \rightarrow are very fast and numerically stable
 - \rightarrow give insight into the interplay of physical parameters leading to the focus shift
 - → can be used in dynamic refocusing routines
- we are happy to adjust these procedures to your situation and support your application

core formulas

$$\overline{T}(\rho) = -\frac{P(\alpha d_0 + 2\mu)}{4\pi\lambda d_0} \left(\gamma + \log\left(\frac{\rho^2}{2\sigma^2}\right) - Ei\left(-\frac{\rho^2}{2\sigma^2}\right)\right) + \Delta\overline{T}(c;\rho) + \mathcal{O}(c^2)$$
$$\Delta z = -\left(\frac{\partial n}{\partial T} + (n-1)\kappa\right) \frac{P_0(\alpha d_0 + 2\mu)}{4\pi\lambda} \left(\left(\frac{f^2}{\sigma^2} - 1\right)\ln(2) - 1\right)\right) + \Delta z(c) + \mathcal{O}(c^2)$$